Colloid and Polymer Science

, Volume 293, Issue 2, pp 533–543 | Cite as

Local piezoelectric response, structural and dynamic properties of ferroelectric copolymers of vinylidene fluoride–tetrafluoroethylene

  • Valentin V. KochervinskiiEmail author
  • Dmitry A. Kiselev
  • Mikhail D. Malinkovich
  • Alexey S. Pavlov
  • Inna A Malyshkina
Original Contribution


The characteristics of the local piezoelectric response of isotropic films of copolymers of vinylidene fluoride (VDF) were compared with 6 and 29 mol% tetrafluoroethylene (TFE) obtained by crystallization from a solution in acetone. Time dependence of the electric displacement response was analyzed after switching of the spontaneous polarization. A copolymer with a higher content of tetrafluoroethylene is characterized by higher values of electrical displacement and piezoelectric response. For interpretation of this fact, we used molecular mobility in amorphous phase dates. It is shown that the activation energy of local and cooperative liquid-like (in the amorphous phase) mobility is markedly lower in the copolymer with a higher content of TFE. Under identical conditions of the crystallization, both films of the copolymers lead to the formation of larger crystals of the polar phase and magnitude of a “long” period at a high content of copolymer of TFE. It is postulated that these structural parameters are responsible for the stable value of residual local piezoelectric activity. It is found that the rapid decay of the signal in the local piezoresponse of polarized films is controlled by the activation energy of the local and cooperative dynamics chains of the amorphous phase.


Ferroelectric polymers Structure Polarization Piezoelectricity Molecular mobility 



The work was carried out with financial support in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of MISiS, RFBR research project no. 14-03-00623 A. The studies are performed on the equipment at the “Materials Science and Metallurgy” Shared Facilities Center of the National University of Science and Technology “MISiS” (ID project RFMEFI59414X0007, contract no. 14.594.21.0007).


  1. 1.
    Kawai H (1969) Jpn J Appl Phys 8:975–976CrossRefGoogle Scholar
  2. 2.
    Bergman JG Jr, McFee JH, Crane GR (1971) Appl Phys Lett 18:203CrossRefGoogle Scholar
  3. 3.
    Kochervinskii VV (1994) Russ Chem Rev 63:367CrossRefGoogle Scholar
  4. 4.
    Kochervinskii VV (1996) Russ Chem Rev 65:865CrossRefGoogle Scholar
  5. 5.
    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) Science 313:334–336CrossRefGoogle Scholar
  6. 6.
    Casalini R, Roland CM (2002) J Polym Sci : Part B: Polym Phys 40:1975–1984CrossRefGoogle Scholar
  7. 7.
    Kochervinskii VV (2009) Crystallogr Rep 54:1146–1171CrossRefGoogle Scholar
  8. 8.
    Li X, Qian X-S, Gu H, Chen X, Lu SG, Lin M, Bateman F, Zhang QM (2002) Appl Phys Lett 101:132903CrossRefGoogle Scholar
  9. 9.
    Scott JC, Bozano LD (2007) Adv Mater 19:1452–1463CrossRefGoogle Scholar
  10. 10.
    Asadi K, De Leeuw DM, De Boer B, Blom PWM (2008) Nat Mater 7:547–550CrossRefGoogle Scholar
  11. 11.
    Kochervinskii VV, Glukhov VA, Sokolov VG, Romadin VF, Murasheva EM, Ovchinnikov YK, Trofimov NA, Lokshin BV (1998) Vysokomol Soedin A 30:1969Google Scholar
  12. 12.
    Kochervinskii VV, Murasheva EM (1991) Vysokomol Soedin A 33:2096–2105Google Scholar
  13. 13.
    Kochervinskii VV, Chubunova EV, Lebedinskii YY, Shmakova NA, Khnykov AY (2011) Polymer Science Ser. A 53:929–946Google Scholar
  14. 14.
    Rosenman G, Urenski P, Agronin A, Rosenwaks Y, Molotskii M (2003) Appl Phys Lett 82:103–105CrossRefGoogle Scholar
  15. 15.
    Munoz RC, Vidal G, Mulsow M, Lisoni JG, Arenas C, Concha A (2000) Phys. Rev. B 62:4686–4697Google Scholar
  16. 16.
    Kiselev DA, Bdikin IK, Selezneva EK, Bormanis K, Sternberg A, Kholkin AL (2007) J Phys D: Appl Phys 40:7109–7112CrossRefGoogle Scholar
  17. 17.
    Furukawa T (1989) Phase Transifions 18:143–211CrossRefGoogle Scholar
  18. 18.
    Ikeda S, Fukada T, Wada Y (1988) J Appl Phys 64:2026–2030CrossRefGoogle Scholar
  19. 19.
    Bihler E, Holdik K, Eisenmenger W (1987) IEEE Trans. Elect Insul EI-22(22):207–210CrossRefGoogle Scholar
  20. 20.
    Kochervinskii VV, Malyshkina IA, Pavlov AS, Bessonova NP, Korlyukov AA, Volkov VV, Kozlova NV, Shmakova NA. J Polym Sci Polym Phys In pressGoogle Scholar
  21. 21.
    Lovinger AJ, Davis DD, Cais RE, Kometani JM (1988) Macromolecules 21: 78Google Scholar
  22. 22.
    Uemura S (1974) J Polym Sci Polym Phys Ed 12:1177–1188CrossRefGoogle Scholar
  23. 23.
    Collins L, Kilpatrick JI, Viassiouk IV, Tselev A, Weber SAL, Jesse S, Kalinun SV, Rodriguez BJ (2014) Appl Phys Letts 104:133103, 1–5Google Scholar
  24. 24.
    Murari NM, Hong S, Lee HN, Katiyar S (2011) Appl Phys Letts 99:052904, 1–3Google Scholar
  25. 25.
    Kochervinskii VV, Kiselev DA, Malinkovich MD, Pavlov AS, Kozlova NV, Shmakova NA (2014) Polym. Sci. A (Russia) 56:48–62Google Scholar
  26. 26.
    Kochervinskii VV, Kozlova NV, Bessonova NP, Shcherbina MA, Pavlov AS (2014) J Mater Sci Res 3:59–73Google Scholar
  27. 27.
    Kochervinskii VV, Pavlov AS, Kozlova NV, Shmakova NA (2014) Polymer Sci. A (Russia) 56:587–602Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Valentin V. Kochervinskii
    • 1
    Email author
  • Dmitry A. Kiselev
    • 2
  • Mikhail D. Malinkovich
    • 2
  • Alexey S. Pavlov
    • 1
  • Inna A Malyshkina
    • 3
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.National University of Science and Technology “MISiS”MoscowRussia
  3. 3.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations