Colloid and Polymer Science

, Volume 292, Issue 10, pp 2399–2411 | Cite as

Polymers in focus: fluorescence correlation spectroscopy

  • Christine M. PapadakisEmail author
  • Peter Košovan
  • Walter Richtering
  • Dominik WöllEmail author


Fluorescence correlation spectroscopy has been increasingly used in polymer science. In the present perspective, the principles of the method are briefly reviewed, and the temporal and spatial resolutions are critically discussed. Examples of recent findings are summarized, focusing on polymer solutions, environmental parameters, combination with other techniques, near-interface measurements, simulations, and modeling. Finally, desirable new developments are discussed.


Fluorescence correlation spectroscopy Microscopy Polymers Polymer solutions Simulations 



CMP acknowledges support from the Deutsche Forschungsgemeinschaft within individual projects and within the priority programs SPP 1259 “Intelligente Hydrogele” and SPP 1369 “Polymer-Solid Contacts: Interfaces and Interphases”. PK acknowledges support from the MSMT of the Czech Republic (grant LK21302). WR thanks the Deutsche Forschungsgemeinschaft for support within the SFB 985. DW thanks the Center for Applied Photonics (CAP) and the Zukunftskolleg of the University of Konstanz for financial and administrative support.


  1. 1.
    Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low-background—analysis of translational diffusion. Eur Biophy J 22(3):169–175Google Scholar
  2. 2.
    Koynov K, Butt H-J (2012) Fluorescence correlation spectroscopy in colloid and interface science. Curr Opin Colloid Interface Sci 17(6):377–387. doi: 10.1016/j.cocis.2012.09.003 Google Scholar
  3. 3.
    Wöll D (2014) Fluorescence correlation spectroscopy in polymer science. RSC Adv 4:2447–2465Google Scholar
  4. 4.
    Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169. doi: 10.1146/annurev.biophys.36.040306.132612 Google Scholar
  5. 5.
    Berne BJ, Pecora R (1976) Dynamic Light Scattering. John Wiley & Sons, New YorkGoogle Scholar
  6. 6.
    Starchev K, Zhang J, Buffle J (1998) Applications of fluorescence correlation spectroscopy—particle size effect. J Colloid Interface Sci 203(1):189–196Google Scholar
  7. 7.
    Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S (2003) Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys J 84(3):1977–1984Google Scholar
  8. 8.
    Shusterman R, Alon S, Gavrinyov T, Krichevsky O (2004) Monomer dynamics in double- and single-stranded DNA polymers. Phys Rev Lett 92(4):048303Google Scholar
  9. 9.
    Petrov EP, Ohrt T, Winkler RG, Schwille P (2006) Diffusion and segmental dynamics of double-stranded DNA. Phys Rev Lett 97(25):258101Google Scholar
  10. 10.
    Kalkbrenner T, Arnold A, Tans SJ (2009) Internal dynamics of supercoiled DNA molecules. Biophys J 96(12):4951–4955Google Scholar
  11. 11.
    Bernheim-Groswasser A, Shusterman R, Krichevsky O (2006) Fluorescence correlation spectroscopy analysis of segmental dynamics in actin filaments. J Chem Phys 125(8):084903. doi: 10.1063/1.2244550 Google Scholar
  12. 12.
    Sokolov IM (2012) Models of anomalous diffusion in crowded environments. Soft Matter 8(35):9043–9052. doi: 10.1039/C2SM25701G Google Scholar
  13. 13.
    Ernst D, Köhler J, Weiss M (2014) Probing the type of anomalous diffusion with single-particle tracking. Phys Chem Chem Phys. doi: 10.1039/C4CP00292J Google Scholar
  14. 14.
    Höfling F, Bamberg KU, Franosch T (2011) Anomalous transport resolved in space and time by fluorescence correlation spectroscopy. Soft Matter 7(4):1358–1363. doi: 10.1039/c0sm00718h Google Scholar
  15. 15.
    Vagias A, Raccis R, Koynov K, Jonas U, Butt H-J, Fytas G, Košovan P, Lenz O, Holm C (2013) Complex tracer diffusion dynamics in polymer solutions. Phys Rev Lett 111(8):088301Google Scholar
  16. 16.
    Kudryavtsev V, Felekyan S, Woźniak AK, König M, Sandhagen C, Kühnemuth R, Seidel CAM, Oesterhelt F (2007) Monitoring dynamic systems with multiparameter fluorescence imaging. Anal Bioanal Chem 387(1):71–82. doi: 10.1007/s00216-006-0917-0 Google Scholar
  17. 17.
    Kühnemuth R, Seidel CAM (2001) Principles of single molecule multiparameter fluorescence spectroscopy. Single Mol 2(4):251–254Google Scholar
  18. 18.
    Bates CM, Maher MJ, Janes DW, Ellison CJ, Willson CG (2013) Block copolymer lithography. Macromolecules 47(1):2–12. doi: 10.1021/ma401762n Google Scholar
  19. 19.
    Krichevsky O (2013) Comment on “Polymer Dynamics, Fluorescence Correlation Spectroscopy, and the Limits of Optical Resolution”. Phys Rev Lett 110(15):159801Google Scholar
  20. 20.
    Enderlein J (2012) Polymer dynamics, fluorescence correlation spectroscopy, and the limits of optical resolution. Phys Rev Lett 108(10):108101Google Scholar
  21. 21.
    Lehmann S, Seiffert S, Richtering W (2012) Spatially resolved tracer diffusion in complex responsive hydrogels. J Am Chem Soc 134:15963–15969Google Scholar
  22. 22.
    Doroshenko M, Gonzales M, Best A, Butt H-J, Koynov K, Floudas G (2012) Monitoring the dynamics of phase separation in a polymer blend by confocal imaging and fluorescence correlation spectroscopy. Macromol Rapid Comm 33(18):1568–1573. doi: 10.1002/marc.201200322 Google Scholar
  23. 23.
    Lehmann S, Seiffert S, Richtering W (2014) Diffusion of guest molecules within sensitive core–shell microgel carriers. J Colloid Interface Sci 431(0):204–208. doi: 10.1016/j.jcis.2014.06.014 Google Scholar
  24. 24.
    Kolmakov K, Belov VN, Wurm CA, Harke B, Leutenegger M, Eggeling C, Hell SW (2010) A versatile route to red-emitting carbopyronine dyes for optical microscopy and nanoscopy. Eur J Org Chem 2010(19):3593–3610. doi: 10.1002/ejoc.201000343 Google Scholar
  25. 25.
    Müller CB, Weiss K, Loman A, Enderlein J, Richtering W (2009) Remote temperature measurements in femto-liter volumes using dual-focus-fluorescence correlation spectroscopy. Lab Chip 9(9):1248–1253. doi: 10.1039/b807910b Google Scholar
  26. 26.
    Bulkin BJ, Lewin M, Kim J (1987) Crystallization kinetics of poly(propylene terephthalate) studied by rapid-scanning Raman spectroscopy and FT-IR spectroscopy. Macromolecules 20(4):830–835. doi: 10.1021/ma00170a022 Google Scholar
  27. 27.
    Starchev K, Ricka J, Buffle J (2001) Noise on fluorescence correlation spectroscopy. J Colloid Interface Sci 233(1):50–55. doi: 10.1006/jcis.2000.7229 Google Scholar
  28. 28.
    Wohland T, Rigler R, Vogel H (2001) The standard deviation in fluorescence correlation spectroscopy. Biophys J 80(6):2987–2999Google Scholar
  29. 29.
    Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10(6):1938–1945. doi: 10.1103/PhysRevA.10.1938 Google Scholar
  30. 30.
    Hanbury Brown R, Twiss RQ (1956) Correlation between photons in 2 coherent beams of light. Nature 177(4497):27–29Google Scholar
  31. 31.
    Felekyan S, Kühnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel CAM (2005) Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev Sci Instrum 76(8):083104. doi: 10.1063/1.1946088 Google Scholar
  32. 32.
    Schmidt T, Schütz GJ, Baumgartner W, Gruber HJ, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93(7):2926–2929Google Scholar
  33. 33.
    Wöll D, Uji-i H, Schnitzler T, Hotta J, Dedecker P, Herrmann A, De Schryver FC, Müllen K, Hofkens J (2008) Radical polymerization tracked by single molecule spectroscopy. Angew Chem Int Ed 47:783–787Google Scholar
  34. 34.
    Dill M, Baier MC, Mecking S, Wöll D (2013) Enhanced accuracy of single-molecule diffusion measurements with a photocleavable energy-transfer dyad. Angew Chem Int Ed 52:12435–12438. doi: 10.1002/anie.201303658 Google Scholar
  35. 35.
    Holyst R, Bielejewska A, Szymanski J, Wilk A, Patkowski A, Gapinski J, Zywocinski A, Kalwarczyk T, Kalwarczyk E, Tabaka M, Ziebacz N, Wieczorek SA (2009) Scaling form of viscosity at all length-scales in poly(ethylene glycol) solutions studied by fluorescence correlation spectroscopy and capillary electrophoresis. Phys Chem Chem Phys 11(40):9025–9032. doi: 10.1039/B908386C Google Scholar
  36. 36.
    Michelman-Ribeiro A, Horkay F, Nossal R, Boukari H (2007) Probe diffusion in aqueous poly(vinyl alcohol) solutions studied by fluorescence correlation spectroscopy. Biomacromolecules 8(5):1595–1600. doi: 10.1021/bm061195r Google Scholar
  37. 37.
    Cherdhirankorn T, Best A, Koynov K, Peneva K, Müllen K, Fytas G (2009) Diffusion in polymer solutions studied by fluorescence correlation spectroscopy. J Phys Chem B 113:3355–3359Google Scholar
  38. 38.
    Zettl H, Zettl U, Krausch G, Enderlein J, Ballauff M (2007) Direct observation of single molecule mobility in semidilute polymer solutions. Phys Rev E 75(6):061804Google Scholar
  39. 39.
    Zettl H, Häfner W, Böker A, Schmalz H, Lanzendorfer M, Müller AHE, Krausch G (2004) Fluorescence correlation spectroscopy of single dye-labeled polymers in organic solvents. Macromolecules 37(5):1917–1920Google Scholar
  40. 40.
    Liu RG, Gao X, Adams J, Oppermann W (2005) A fluorescence correlation spectroscopy study on the self-diffusion of polystyrene chains in dilute and semidilute solution. Macromolecules 38(21):8845–8849. doi: 10.1021/ma0511090 Google Scholar
  41. 41.
    Grabowski C, Mukhopadhyay A (2008) Diffusion of polystyrene chains and fluorescent dye molecules in semidilute and concentrated polymer solutions. Macromolecules 41:6191–6194Google Scholar
  42. 42.
    Zettl U, Hoffmann ST, Koberling F, Krausch G, Enderlein J, Harnau L, Ballauff M (2009) Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules 42(24):9537–9547. doi: 10.1021/ma901404g Google Scholar
  43. 43.
    Zettl U, Ballauff M, Harnau L (2010) A fluorescence correlation spectroscopy study of macromolecular tracer diffusion in polymer solutions. J Phys Condens Matter 22(49):494111. doi: 10.1088/0953-8984/22/49/494111 Google Scholar
  44. 44.
    Müller CB, Eckert T, Loman A, Enderlein J, Richtering W (2009) Dual-focus fluorescence correlation spectroscopy: a robust tool for studying molecular crowding. Soft Matter 5(7):1358–1366. doi: 10.1039/b812289j Google Scholar
  45. 45.
    de Gennes P-G (1979) Scaling Concepts in Polymer Physics. Cornell University Press, LondonGoogle Scholar
  46. 46.
    Doi M, Edwards DA (1986) The Theory of Polymer Dynamics. Oxford University Press, New YorkGoogle Scholar
  47. 47.
    Phillies GDJ (1989) The hydrodynamic scaling model for polymer self-diffusion. J Phys Chem 93(13):5029–5039Google Scholar
  48. 48.
    Modesti G, Zimmermann B, Börsch M, Herrmann A, Saalwächter K (2009) Diffusion in model networks as studied by NMR and fluorescence correlation spectroscopy. Macromolecules 42(13):4681–4689. doi: 10.1021/ma900614j Google Scholar
  49. 49.
    Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F (2004) Structural changes in polymer gels probed by fluorescence correlation spectroscopy. Macromolecules 37(26):10212–10214Google Scholar
  50. 50.
    Raccis R, Roskamp R, Hopp I, Menges B, Koynov K, Jonas U, Knoll W, Butt HJ, Fytas G (2011) Probing mobility and structural inhomogeneities in grafted hydrogel films by fluorescence correlation spectroscopy. Soft Matter 7(15):7042–7053. doi: 10.1039/C0SM01438A Google Scholar
  51. 51.
    Zustiak SP, Boukari H, Leach JB (2010) Solute diffusion and interactions in cross-linked poly(ethylene glycol) hydrogels studied by fluorescence correlation spectroscopy. Soft Matter 6(15):3609–3618. doi: 10.1039/C0SM00111B Google Scholar
  52. 52.
    Dorfschmid M, Müllen K, Zumbusch A, Wöll D (2010) Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation spectroscopy (fcFCS). Macromolecules 43:6174–6179Google Scholar
  53. 53.
    Gianneli M, Beines PW, Roskamp RF, Koynov K, Fytas G, Knoll W (2007) Local and global dynamics of transient polymer networks and swollen gels anchored on solid surfaces. J Phys Chem C 111(35):13205–13211. doi: 10.1021/jp0728959 Google Scholar
  54. 54.
    Pristinski D, Kozlovskaya V, Sukhishvili SA (2005) Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. J Chem Phys 122(1):014907Google Scholar
  55. 55.
    Fu Y, Ye F, Sanders WG, Collinson MM, Higgins DA (2006) Single molecule spectroscopy studies of diffusion in mesoporous silica thin films. J Phys Chem B 110(18):9164–9170. doi: 10.1021/jp054178p Google Scholar
  56. 56.
    Wong JE, Müller CB, Diez-Pascual AM, Richtering W (2009) Study of layer-by-layer films on thermoresponsive nanogels using temperature-controlled dual-focus fluorescence correlation spectroscopy. J Phys Chem B 113(49):15907–15913. doi: 10.1021/jp903941c Google Scholar
  57. 57.
    Wong JE, Müller CB, Laschewsky A, Richtering W (2007) Direct evidence of layer-by-layer assembly of polyelectrolyte multilayers on soft and porous temperature-sensitive PNiPAM microgel using fluorescence correlation spectroscopy. J Phys Chem B 111(29):8527–8531Google Scholar
  58. 58.
    Hofmann CH, Plamper FA, Scherzinger C, Hietala S, Richtering W (2012) Cononsolvency revisited: solvent entrapment by N-isopropylacrylamide and N, N-diethylacrylamide microgels in different water/methanol mixtures. Macromolecules 46(2):523–532. doi: 10.1021/ma302384v Google Scholar
  59. 59.
    Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis CM (2012) Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid Polym Sci 290(5):385–400. doi: 10.1007/s00396-011-2564-z Google Scholar
  60. 60.
    Wang F, Shi Y, Luo S, Chen Y, Zhao J (2012) Conformational transition of poly(N-isopropylacrylamide) single chains in its cononsolvency process: a study by fluorescence correlation spectroscopy and scaling analysis. Macromolecules 45(22):9196–9204. doi: 10.1021/ma301780f Google Scholar
  61. 61.
    Müller CB, Richtering W (2008) Sealed and temperature-controlled sample cell for inverted and confocal microscopes and fluorescence correlation spectroscopy. Colloid Polym Sci 286(11):1215–1222. doi: 10.1007/s00396-008-1901-3 Google Scholar
  62. 62.
    Flier BMI, Baier MC, Huber J, Müllen K, Mecking S, Zumbusch A, Wöll D (2012) Heterogeneous diffusion in thin polymer films as observed by high-temperature single-molecule fluorescence microscopy. J Am Chem Soc 134(1):480–488. doi: 10.1021/ja208581r Google Scholar
  63. 63.
    van Rompaey E, Engelborghs Y, Sanders N, De Smedt C, Demeester J (2001) Interactions between oligonucleotides and cationic polymers investigated by fluorescence correlation spectroscopy. Pharm Res 18(7):928–936Google Scholar
  64. 64.
    Jia P, Yang Q, Gong Y, Zhao J (2012) Dynamic exchange of counterions of polystyrene sulfonate. J Chem Phys 136(8):084904. doi: 10.1063/1.3688082 Google Scholar
  65. 65.
    Loos K, Böker A, Zettl H, Zhang M, Krausch G, Müller AHE (2005) Micellar aggregates of amylose-block-polystyrene rod–coil block copolymers in water and THF. Macromolecules 38(3):873–879. doi: 10.1021/ma0345549 Google Scholar
  66. 66.
    Schuch H, Klingler J, Rossmanith P, Frechen T, Gerst M, Feldthusen J, Müller AHE (2000) Characterization of micelles of polyisobutylene-block-poly(methacrylic acid) in aqueous medium. Macromolecules 33(5):1734–1740. doi: 10.1021/ma991491e Google Scholar
  67. 67.
    Bonné TB, Papadakis CM, Lüdtke K, Jordan R (2007) Role of the tracer in characterizing the aggregation behavior of aqueous block copolymer solutions using fluorescence correlation spectroscopy. Colloid Polym Sci 285(5):491–497. doi: 10.1007/s00396-006-1616-2 Google Scholar
  68. 68.
    Ferse B, Richter S, Eckert F, Kulkarni A, Papadakis CM, Arndt KF (2008) Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite hydrogels synthesized by photopolymerization. Langmuir 24(21):12627–12635. doi: 10.1021/la802162g Google Scholar
  69. 69.
    Bonné TB, Lüdtke K, Jordan R, Štěpánek P, Papadakis CM (2004) Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy (vol 282, pg 833, 2004). Colloid Polym Sci 282(12):1425–1425. doi: 10.1007/s00396-004-1196-y Google Scholar
  70. 70.
    Humpolíčková J, Procházka K, Hof M, Tuzar Z, Špírková M (2003) Fluorescence correlation spectroscopy using octadecylrhodamine B as a specific micelle-binding fluorescent tag; light scattering and tapping mode atomic force microscopy studies of amphiphilic water-soluble block copolymer micelles†,‡. Langmuir 19(10):4111–4119. doi: 10.1021/la0209334 Google Scholar
  71. 71.
    Personick ML, Mirkin CA (2013) Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc 135(49):18238–18247. doi: 10.1021/ja408645b Google Scholar
  72. 72.
    Fatin-Rouge N, Wilkinson KJ, Buffle J (2006) Combining small angle neutron scattering (SANS) and fluorescence correlation spectroscopy (FCS) measurements to relate diffusion in agarose gels to structure. J Phys Chem B 110(41):20133–20142. doi: 10.1021/jp060362e Google Scholar
  73. 73.
    Casoli A, Schönhoff M (2001) Fluorescence correlation spectroscopy as a tool to investigate single molecule probe dynamics in thin polymer films. Biol Chem, vol 382. doi: 10.1515/BC.2001.044
  74. 74.
    Sukhishvili SA, Chen Y, Müller JD, Gratton E, Schweizer KS, Granick S (2000) Materials science—diffusion of a polymer ‘pancake’. Nature 406(6792):146–146. doi: 10.1038/35018166 Google Scholar
  75. 75.
    Sukhishvili SA, Chen Y, Müller JD, Gratton E, Schweizer KS, Granick S (2002) Surface diffusion of poly(ethylene glycol). Macromolecules 35(5):1776–1784. doi: 10.1021/ma0113529 Google Scholar
  76. 76.
    Zhao J, Granick S (2004) Polymer lateral diffusion at the solid-liquid interface. J Am Chem Soc 126(20):6242–6243. doi: 10.1021/ja0493749 Google Scholar
  77. 77.
    Zhao J, Granick S (2007) How polymer surface diffusion depends on surface coverage. Macromolecules 40(4):1243–1247. doi: 10.1021/ma062104l Google Scholar
  78. 78.
    Thompson NL, Steele BL (2007) Total internal reflection with fluorescence correlation spectroscopy. Nat Protocols 2(4):878–890Google Scholar
  79. 79.
    Woods DA, Bain CD (2014) Total internal reflection spectroscopy for studying soft matter. Soft Matter 10(8):1071–1096. doi: 10.1039/C3SM52817K Google Scholar
  80. 80.
    Thompson NL, Wang X, Navaratnarajah P (2009) Total internal reflection with fluorescence correlation spectroscopy: applications to substrate-supported planar membranes. J Struct Biol 168(1):95–106Google Scholar
  81. 81.
    Yordanov S, Best A, Butt H-J, Koynov K (2009) Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy. Opt Exp 17(23):21149–21158Google Scholar
  82. 82.
    Peter C, Kremer K (2009) Multiscale simulation of soft matter systems—from the atomistic to the coarse-grained level and back. Soft Matter 5(22):4357–4366. doi: 10.1039/B912027K Google Scholar
  83. 83.
    Brini E, Algaer EA, Ganguly P, Li C, Rodriguez-Ropero F, van der Vegt NFA (2013) Systematic coarse-graining methods for soft matter simulations—a review. Soft Matter 9(7):2108–2119. doi: 10.1039/C2SM27201F Google Scholar
  84. 84.
    Lyubartsev A, Mirzoev A, Chen L, Laaksonen A (2010) Systematic coarse-graining of molecular models by the Newton inversion method. Faraday Discuss 144:43–56. doi: 10.1039/B901511F Google Scholar
  85. 85.
    Frenkel D, Smit B (2002) Understanding Molecular Simulation—from Algorithms to Applications. 2nd edn. Academic Press, ISBN 0-12-267351-4.Google Scholar
  86. 86.
    Rotne J, Prager S (1969) Variational treatment of hydrodynamic interaction in polymers. J Chem Phys 50(11):4831–4837. doi: 10.1063/1.1670977 Google Scholar
  87. 87.
    Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360. doi: 10.1063/1.436761 Google Scholar
  88. 88.
    Dünweg B, Ahlrichs P (1998) Lattice-Boltzmann simulation of polymer-solvent systems. Int J Modern Phys C 09(08):1429–1438. doi: 10.1142/S0129183198001291 Google Scholar
  89. 89.
    Fyta M, Melchionna S, Kaxiras E, Succi S (2006) Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Multiscale Model Simulation 5(4):1156–1173. doi: 10.1137/060660576 Google Scholar
  90. 90.
    Felix H, Thomas F (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4):046602Google Scholar
  91. 91.
    Piskorz TK, Ochab-Marcinek A (2014) A universal model of restricted diffusion for fluorescence correlation spectroscopy. J Phys Chem B 118(18):4906–4912. doi: 10.1021/jp502467u Google Scholar
  92. 92.
    Reznik C, Darugar Q, Wheat A, Fulghum T, Advincula RC, Landes CF (2008) Single Ion diffusive transport within a poly(styrene sulfonate) polymer brush matrix probed by fluorescence correlation spectroscopy. J Phys Chem B 112(35):10890–10897. doi: 10.1021/jp803718p Google Scholar
  93. 93.
    Fritsch C, Langowski J (2011) Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study. Chromosome Res 19(1):63–81. doi: 10.1007/s10577-010-9168-1 Google Scholar
  94. 94.
    Hinczewski M, Netz RR (2009) Global cross-over dynamics of single semiflexible polymers. EPL (Europhysics Letters) 88(1):18001Google Scholar
  95. 95.
    Ito S, Toitani N, Yamauchi H, Miyasaka H (2010) Evaluation of radiation force acting on macromolecules by combination of Brownian dynamics simulation with fluorescence correlation spectroscopy. Phys Rev E 81(6):061402Google Scholar
  96. 96.
    Wocjan T, Krieger J, Krichevsky O, Langowski J (2009) Dynamics of a fluorophore attached to superhelical DNA: FCS experiments simulated by Brownian dynamics. Phys Chem Chem Phys 11(45):10671–10681. doi: 10.1039/B911857H Google Scholar
  97. 97.
    Feng L, Yang J, Zhao J, Wang D, Koynov K, Butt H-J (2013) Fluorescence correlation spectroscopy of repulsive systems: theory, simulation, and experiment. J Chem Phys 138 (21):-. doi: 10.1063/1.4807860
  98. 98.
    Košovan P, Uhlík F, Kuldová J, Štěpánek M, Limpouchová Z, Procházka K, Benda A, Humpolíčková J, Hof M (2011) Monte Carlo simulation of fluorescence correlation spectroscopy data. Collect Czech Chem Commun 76(3):207–222. doi: 10.1135/cccc2009526 Google Scholar
  99. 99.
    Roehm D, Arnold A (2012) Lattice Boltzmann simulations on GPUs with ESPResSo. Eur Phys J Spec Top 210(1):89–100. doi: 10.1140/epjst/e2012-01639-6 Google Scholar
  100. 100.
    Richtering W, Saunders BR (2014) Gel architectures and their complexity. Soft Matter. doi: 10.1039/C4SM00208C Google Scholar
  101. 101.
    Brizard A, Stuart M, van Bommel K, Friggeri A, de Jong M, van Esch J (2008) Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants. Angew Chem Int Ed 47(11):2063–2066. doi: 10.1002/anie.200704609 Google Scholar
  102. 102.
    Laupheimer M, Jovic K, Antunes FE, da Graça Martins Miguel M, Stubenrauch C (2013) Studying orthogonal self-assembled systems: phase behaviour and rheology of gelled microemulsions. Soft Matter 9(13):3661–3670. doi: 10.1039/C3SM27883B Google Scholar
  103. 103.
    Laschewsky A, Müller-Buschbaum P, Papadakis C (2013) Thermo-responsive Amphiphilic di- and triblock copolymers based on poly(N-isopropylacrylamide) and poly(methoxy diethylene glycol acrylate): aggregation and hydrogel formation in bulk solution and in thin films. Prog Colloid Polym Sci. Springer International Publishing, pp 15–34. doi: 10.1007/978-3-319-01683-2_2
  104. 104.
    Miasnikova A, Laschewsky A, De Paoli G, Papadakis CM, Müller-Buschbaum P, Funari SS (2012) Thermoresponsive hydrogels from symmetrical triblock copolymers poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene). Langmuir 28(9):4479–4490. doi: 10.1021/la204665q Google Scholar
  105. 105.
    Pich A, Richtering W (2011) Microgels by precipitation polymerization: synthesis, characterization, and functionalization. In: Pich A, Richtering W (eds) Chemical Design of Responsive Microgels, vol 234. Advances in Polymer Science. Springer, Berlin, pp 1–37. doi: 10.1007/12_2010_70 Google Scholar
  106. 106.
    Richtering W, Pich A (2012) The special behaviours of responsive core-shell nanogels. Soft Matter 8(45):11423–11430. doi: 10.1039/C2SM26424B Google Scholar
  107. 107.
    Seiffert S (2011) Functional microgels tailored by droplet-based microfluidics. Macromol Rapid Comm 32(20):1600–1609. doi: 10.1002/marc.201100342 Google Scholar
  108. 108.
    Scherzinger C, Holderer O, Richter D, Richtering W (2012) Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture. Phys Chem Chem Phys 14(8):2762–2768. doi: 10.1039/C2CP23328B Google Scholar
  109. 109.
    Richtering W (2012) Responsive emulsions stabilized by stimuli-sensitive microgels: emulsions with special non-pickering properties. Langmuir 28(50):17218–17229. doi: 10.1021/la302331s Google Scholar
  110. 110.
    Geisel K, Isa L, Richtering W (2014) The compressibility of pH-sensitive microgels at the oil–water interface: higher charge leads to less repulsion. Angew Chem 126(19):5005–5009. doi: 10.1002/ange.201402254 Google Scholar
  111. 111.
    Schaeffel D, Staff RH, Butt H-J, Landfester K, Crespy D, Koynov K (2012) Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation. Nano Lett 12(11):6012–6017. doi: 10.1021/nl303581q Google Scholar
  112. 112.
    Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Fachgebiet Physik weicher Materie, Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles University in PraguePragueCzech Republic
  3. 3.Institute for Physical ChemistryRWTH Aachen UniversityAachenGermany
  4. 4.Zukunftskolleg / Faculty of ChemistryUniversity of KonstanzKonstanzGermany

Personalised recommendations