Advertisement

Colloid and Polymer Science

, Volume 292, Issue 10, pp 2599–2610 | Cite as

Dual thermo- and pH-sensitive poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted graphene oxide

  • Masoumeh Nikdel
  • Mehdi Salami-KalajahiEmail author
  • Mahdi Salami Hosseini
Original Contribution

Abstract

A two-step modification was used to attach atom transfer radical polymerization (ATRP) initiator onto graphene oxide surface. ATRP polymerization of 2-hydroxyethyl methacrylate (HEMA) was performed via “grafting from” approach. Due to uncontrolled ATRP of acrylic acid (AA), the Br-terminated P(HEMA) chains were converted to reversible addition–fragmentation chain transfer agent and polymerization of AA was done. The structure of modified nanosheets was characterized using X-ray diffraction analysis, Raman spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy, and etc. These nanosheets showed dual pH- and thermo-sensitive properties as measured by UV–visible spectroscopy in different pH (2–13) and temperature (15–55 °C) values. Generally, UV absorbance of P(HEMA-co-AA)-grafted nanosheets was higher than P(HEMA)-grafted nanosheets. Also, it seems that the poly(acrylic acid) block induces more pH sensitivity behavior than P(HEMA) block. Lower critical solution temperature of polymer-grafted nanosheets were shifted to higher temperature when chain extension was performed.

Keywords

Graphene oxide Poly(2-hydroxyethyl methacrylate) Poly(acrylic acid) Block copolymer Stimuli responsive 

Notes

Acknowledgments

We are grateful for support from the Iran National Science Foundation (INSF) (grant no. 91002479).

References

  1. 1.
    Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289CrossRefGoogle Scholar
  2. 2.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Edge-functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int. doi: 10.1002/pi.4730 Google Scholar
  3. 3.
    Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671CrossRefGoogle Scholar
  4. 4.
    Gonçalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, Grácio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRefGoogle Scholar
  5. 5.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Adv. doi: 10.1039/C4RA03451A Google Scholar
  6. 6.
    Panahian P, Salami-Kalajahi M, Salami Hosseini M (2014) Synthesis of dual thermoresponsive and ph-sensitive hollow nanospheres by atom transfer radical polymerization. J Polym Res 21:455CrossRefGoogle Scholar
  7. 7.
    Panahian P, Salami-Kalajahi M, Salami Hosseini M (2014) Synthesis of dual thermosensitive and pH-sensitive hollow nanospheres based on poly(acrylic acid‑b‑2-hydroxyethyl methacrylate) via an atom transfer reversible addition-fragmentation radical process. Ind Eng Chem Res 53:8079–8086CrossRefGoogle Scholar
  8. 8.
    Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714CrossRefGoogle Scholar
  9. 9.
    Bak JM, Lee T, Seo E, Lee Y, Jeong HM, Kim B-S, Lee H-I (2012) Thermoresponsive graphene nanosheets by functionalization with polymer brushes. Polymer 53:316–323CrossRefGoogle Scholar
  10. 10.
    Bak JM, Lee H-I (2012) pH-tunable aqueous dispersion of graphene nanocomposites functionalized with poly(acrylic acid) brushes. Polymer 53:4955–4960CrossRefGoogle Scholar
  11. 11.
    Baskaran D, Dunlap JR, Mays JW, Bratcher MS (2005) Grafting efficiency of hydroxy-terminated poly(methyl methacrylate) with multiwalled carbon nanotubes. Macromol Rapid Commun 26:481–486CrossRefGoogle Scholar
  12. 12.
    Sarsabili M, Parvini M, Salami-Kalajahi M, Ganjeh-Anzabi P (2013) In situ reversible addition-fragmentation chain transfer polymerization of styrene in the presence of MCM-41 nanoparticles: comparing “grafting from” and “grafting through” approaches”. Adv Polym Technol 32:21372CrossRefGoogle Scholar
  13. 13.
    Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Roghani-Mamaqani H, Hemmati M (2011) Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization. Chem Eng J 174:368–375CrossRefGoogle Scholar
  14. 14.
    Rahimi-Razin S, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaqani H (2012) Effect of different modified nanoclays on the kinetics of preparation and properties of polymer-based nanocomposites. J Polym Res 19:9954CrossRefGoogle Scholar
  15. 15.
    Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188CrossRefGoogle Scholar
  16. 16.
    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Nanoclay-encapsulated polystyrene microspheres by reverse atom transfer radical polymerization. Polym Compos 33:990–998CrossRefGoogle Scholar
  17. 17.
    Khezri K, Haddadi-Asl V, Roghani-Mamaqani H, Salami-Kalajahi M (2012) Synthesis of clay-dispersed poly (styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: a reverse approach. J Appl Polym Sci 124:2278–2286CrossRefGoogle Scholar
  18. 18.
    Ladaviére C, Dörr N, Claverie JP (2001) Controlled radical polymerization of acrylic acid in protic media. Macromolecules 34:5370–5372CrossRefGoogle Scholar
  19. 19.
    Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari S-A, Khezri K (2013) “Grafting through” approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition–fragmentation chain transfer polymerization. J Sol-Gel Sci Technol 66:337–344CrossRefGoogle Scholar
  20. 20.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  21. 21.
    Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43:641–649CrossRefGoogle Scholar
  22. 22.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H, Hemmati M (2012) Effect of carbon nanotubes on the kinetics of in situ polymerization of methyl methacrylate. Nano 7:1250003CrossRefGoogle Scholar
  23. 23.
    Wager CM, Haddleton DM, Bon SAF (2004) A simple method to convert atom transfer radical polymerization (ATRP) initiators into reversible addition fragmentation chain-transfer (RAFT) mediators. Eur Polym J 40:641–645CrossRefGoogle Scholar
  24. 24.
    Kwak Y, Nicolaÿ R, Matyjaszewski K (2009) A simple and efficient synthesis of RAFT chain transfer agents via atom transfer radical addition–fragmentation. Macromolecules 42:3738–3742CrossRefGoogle Scholar
  25. 25.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333CrossRefGoogle Scholar
  26. 26.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Properties of PMMA/carbon nanotubes nanocomposites prepared by “grafting through” method. Polym Compos 33:215–224CrossRefGoogle Scholar
  27. 27.
    Etmimi HM, Sanderson RD (2011) New approach to the synthesis of exfoliated polymer/graphite nanocomposites by miniemulsion polymerization using functionalized graphene. Macromolecules 44:8504–8515CrossRefGoogle Scholar
  28. 28.
    Su C, Loh KP (2013) Carbocatalysts: graphene oxide and its derivatives. Acc Chem Res 46:2275–2285CrossRefGoogle Scholar
  29. 29.
    Ou J, Wang J, Liu S, Mu B, Ren J, Wang H, Yang S (2010) Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26:15830–15836CrossRefGoogle Scholar
  30. 30.
    Pramoda KP, Hussain H, Koh HM, Tan HR, He CB (2010) Covalent bonded polymer–graphene nanocomposites. J Polym Sci A Polym Chem 48:4262–4267CrossRefGoogle Scholar
  31. 31.
    Veerapandian M, Lee M-H, Krishnamoorthy K, Yun K (2012) Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon 50:4228–4238CrossRefGoogle Scholar
  32. 32.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2012) Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem Mater 24:2292–2298CrossRefGoogle Scholar
  33. 33.
    Ye Q, Gao T, Wan F, Yu B, Pei X, Zhou F, Xue Q (2012) Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J Mater Chem 22:13123–13131CrossRefGoogle Scholar
  34. 34.
    Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRefGoogle Scholar
  35. 35.
    Zhu S, Li J, Chen Y, Chen Z, Chen C, Li Y, Cui Z, Zhang D (2012) Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release. J Nanoparticle Res 14:1132CrossRefGoogle Scholar
  36. 36.
    Deng Y, Li Y, Dai J, Lang M, Huang X (2011) An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J Polym Sci A Polym Chem 49:1582–1590CrossRefGoogle Scholar
  37. 37.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992CrossRefGoogle Scholar
  38. 38.
    Jeon I-Y, Choi H-J, Jung S-M, Seo J-M, Kim M-J, Dai L, Baek J-B (2013) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. Am Chem Soc 135:1386–1393CrossRefGoogle Scholar
  39. 39.
    Sun S, Cao Y, Feng J, Wu P (2010) Click chemistry as a route for the immobilization of well-defined polystyrene onto graphene sheets. J Mater Chem 20:5605–5607CrossRefGoogle Scholar
  40. 40.
    Veca LM, Lu F, Meziani MJ, Cao L, Zhang P, Qi G, Qu L, Shrestha M, Sun Y-P (2009) Polymer functionalization and solubilization of carbon nanosheets. Chem Commun 2565–2567Google Scholar
  41. 41.
    Pan Y, Bao H, Sahoo NG, Wu T, Li L (2011) Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv Funct Mater 21:2754–2763CrossRefGoogle Scholar
  42. 42.
    Xu X, Huang J (2004) Synthesis and characterization of well-defined poly(2-hydroxyethyl methacrylate-co-styrene)-graft-poly(ε-caprolactone) by sequential controlled polymerization. J Polym Sci A Polym Chem 42:5523–5529CrossRefGoogle Scholar
  43. 43.
    Zhao X, Liu W, Chen D, Lin X, Lu WW (2007) Effect of block order of ABA- and BAB-type NIPAAm/HEMA triblock copolymers on thermoresponsive behavior of solutions. Macromol Chem Phys 208:1773–1781CrossRefGoogle Scholar
  44. 44.
    Su Y, Xiao X, Li S, Dan M, Wanga X, Zhang W (2014) Precise evaluation of the block copolymer nanoparticle growth in polymerization-induced self-assembly under dispersion conditions. Polym Chem 5:578–587CrossRefGoogle Scholar
  45. 45.
    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix-grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetic study. In J Chem Kinet 44:555–569CrossRefGoogle Scholar
  46. 46.
    Amirshaqaqi N, Salami-Kalajahi M, Mahdavian M (2014) Encapsulation of aluminum flakes with hybrid silica/poly(acrylic acid) nanolayers by combination of sol–gel and in situ polymerization methods: a corrosion behavior study. J Sol-Gel Sci Technol 69:513–519CrossRefGoogle Scholar
  47. 47.
    Ferreira L, Vidal MM, Gil MH (2000) Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. Int J Pharm 194:169–180CrossRefGoogle Scholar
  48. 48.
    Weaver JVM, Bannister I, Robinson KL, Bories-Azeau X, Armes SP (2004) Stimulus-responsive water-soluble polymers based on 2-hydroxyethylmethacrylate. Macromolecules 37:2395–2403CrossRefGoogle Scholar
  49. 49.
    Nassif N, Gehrke N, Pinna N, Shirshova N, Tauer K, Antonietti M, Cölfen H (2005) Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway. Angew Chem Int Ed 44:6004–6009CrossRefGoogle Scholar
  50. 50.
    Xu X-D, Chen C-S, Wang Z-C, Wang G-R, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) “Click” chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogels. J Polym Sci A Polym Chem 46:5263–5277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Masoumeh Nikdel
    • 1
    • 2
  • Mehdi Salami-Kalajahi
    • 1
    • 2
    Email author
  • Mahdi Salami Hosseini
    • 1
    • 2
  1. 1.Department of Polymer EngineeringSahand University of TechnologyTabrizIran
  2. 2.Institute of Polymeric MaterialsSahand University of TechnologyTabrizIran

Personalised recommendations