Colloid and Polymer Science

, Volume 292, Issue 8, pp 1933–1938 | Cite as

Charge transport and dipolar relaxations in an alkali metal oligoether carboxylate ionic liquid

Short Communication


Charge transport and dipolar relaxations in a sodium-based oligoether carboxylate ionic liquid are investigated in a wide frequency and temperature range by means of broadband dielectric spectroscopy (BDS). The dielectric spectra are described at lower temperatures in terms of dipolar relaxations whereas hopping conduction in a random spatially varying energy landscape is quantitatively shown to dominate the spectra at higher temperatures. Based on detailed analysis of the dielectric relaxation strength in its temperature dependence, the slower secondary relaxation process is attributed to molecular fluctuation of ion pairs (sodium and carboxylate ions) while the localized motion of the carboxylate anion gives rise to the faster process observed.


Ionic liquids Dielectric relaxation Charge transport Secondary relaxations 



Financial support from the University of Tennessee-Knoxville through tenure-track faculty start-up funds is gratefully acknowledged. The author also thanks the German Research Foundation for the support under the DFG SPP 1191 Priority Program on Ionic Liquids. The experiments reported in the current article were performed in the laboratory of Prof. Friedrich Kremer at the University of Leipzig, and Prof. Richard Buchner (University of Regensburg) kindly provided the samples.


  1. 1.
    Wasserscheid P, Welton W (2008) Ionic liquids in synthesis, ed. P. Wasserscheid and W. Welton. Wiley, WeinheimGoogle Scholar
  2. 2.
    Ye JT et al (2010) Liquid-gated interface superconductivity on an atomically flat film. Nat Mater 9(2):125–128CrossRefGoogle Scholar
  3. 3.
    Zech O et al (2009) Alkali metal oligoether carboxylates—a new class of ionic liquids. Chem Eur J 15(6):1341–1345CrossRefGoogle Scholar
  4. 4.
    Matzke M et al (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9(11):1198–1207CrossRefGoogle Scholar
  5. 5.
    Wood N, Stephens G (2010) Accelerating the discovery of biocompatible ionic liquids. Phys Chem Chem Phys 12(8):1670–1674CrossRefGoogle Scholar
  6. 6.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4418CrossRefGoogle Scholar
  7. 7.
    Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Mod Phys 81(3):999CrossRefGoogle Scholar
  8. 8.
    Sangoro JR et al (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11(6):913–916CrossRefGoogle Scholar
  9. 9.
    Krause C et al (2010) Charge transport and dipolar relaxations in imidazolium-based ionic liquids. J Phys Chem B 114(1):382–386CrossRefGoogle Scholar
  10. 10.
    Griffin P et al (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114509CrossRefGoogle Scholar
  11. 11.
    Griffin PJ et al (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118(3):783–790CrossRefGoogle Scholar
  12. 12.
    Kremer F, Schoenhals A. (2003) Broadband dielectric spectroscopy, ed. F. Kremer and A. Schoenhals. Springer, BerlinGoogle Scholar
  13. 13.
    Rivera A, Roessler EA (2006) Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Phys Rev B 73(21):212201–212204CrossRefGoogle Scholar
  14. 14.
    Sangoro JR et al (2008) Charge transport and mass transport in imidazolium-based ionic liquids. Phys Rev E 77(5):051202CrossRefGoogle Scholar
  15. 15.
    Serghei A et al (2009) Electrode polarization and charge transport at solid interfaces. Phys Rev B 80(18):184301–184305CrossRefGoogle Scholar
  16. 16.
    Matsushima K, Kawamura N, Okahara M (1979) Synthesis of novel macrocyclic ether-ester compounds via the intramolecular cyclization of oligoethylene glycol monocarboxymethyl ethers. Tetrahedron Lett 20(36):3445–3448CrossRefGoogle Scholar
  17. 17.
    Endres F, Abbott AP, Macfarlane D (2008) Electrodeposition from ionic liquids. Electrodeposition from ionic liquids. Wiley GmbH & Co. KGaA. 369–377Google Scholar
  18. 18.
    Dyre JC (1988) The random free-energy barrier model for Ac conduction in disordered solids. J Appl Phys 64(5):2456–2468CrossRefGoogle Scholar
  19. 19.
    Dyre JC, Schroder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72(3):873–892CrossRefGoogle Scholar
  20. 20.
    Boettger H, Bryksin VV (1985) Hopping conduction in solids. Akademie, BerlinGoogle Scholar
  21. 21.
    Johari GP, Goldstein M (1970) Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J Chem Phys 53(6):2372–2388CrossRefGoogle Scholar
  22. 22.
    Johari GP (1973) Intrinsic mobility of molecular glasses. J Chem Phys 58(4):1766–1770CrossRefGoogle Scholar
  23. 23.
    Zech O et al (2010) Correlation between polarity parameters and dielectric properties of [Na][TOTO]-a sodium ionic liquid. Phys Chem Chem Phys 12(42):14341–14350CrossRefGoogle Scholar
  24. 24.
    Sangoro JR, Kremer F (2012) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45(4):525–532CrossRefGoogle Scholar
  25. 25.
    Sangoro JR et al (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681CrossRefGoogle Scholar
  26. 26.
    Sangoro JR et al (2008) Charge transport and mass transport in imidazolium-based ionic liquids. Phys Rev E Stat Nonlin Soft Matter Phys 77(5 Pt 1):051202CrossRefGoogle Scholar
  27. 27.
    Eilmes A, Kubisiak P (2013) Quantum-chemical and molecular dynamics study of M + [TOTO] − (M = Li, Na, K) ionic liquids. J Phys Chem B 117(41):12583–12592CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Tennessee-KnoxvilleKnoxvilleUSA

Personalised recommendations