Colloid and Polymer Science

, Volume 292, Issue 8, pp 2013–2023 | Cite as

Magnetic particle nanorheology

  • Eric Roeben
  • Lisa Roeder
  • Sandra Teusch
  • Marc Effertz
  • Ulrich K. Deiters
  • Annette M. Schmidt
Short Communication

Abstract

We investigate the employment of AC susceptometry as a novel method to extract frequency- and scale-dependent rheological properties of soft materials. The approach makes use of the interrelation between the magnetic susceptibility of magnetically blocked tracer particles and the mechanical modulus of the matrix as experienced on the particle scale. We report susceptibility measurements on aqueous solutions of ethylene glycol, triethylene glycol, or poly-(ethylene glycol), using CoFe2O4 nanoparticles as tracer particles, in the frequency range of 1 Hz–250 kHz. Frequency-dependent rheological properties, including viscosity and loss moduli, of the solutions were obtained by applying an extended Debye relaxation model and a method analogous to the Gemant-DiMarzio-Bishop approach.

Keywords

AC susceptometry Microrheology Scale-dependent viscosity Blocked nanoparticles 

References

  1. 1.
    Chihara J (1969) Kinetic theory of collective modes in classical liquids*. Progr Theor Phys 41:285–295CrossRefGoogle Scholar
  2. 2.
    Liu J, Cao D, Zhang L (2008) Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes—Einstein Law. 6653–6661Google Scholar
  3. 3.
    Ganesan V, Pryamitsyn V, Surve M, Narayanan B (2006) Noncontinuum effects in nanoparticle dynamics in polymers. J Chem Phys 124:221102CrossRefGoogle Scholar
  4. 4.
    Brochard Wyart F, de Gennes PG (2000) Viscosity at small scales in polymer melts. EurJPhysE 97:93–97Google Scholar
  5. 5.
    Crick F, Hughes A (1950) The physical properties of cytoplasm: a study by means of the magnetic particle method Part I. Experimental. Exp Cell Res 1:37–80Google Scholar
  6. 6.
    MacKintosh F, Schmidt C (1999) Microrheology. Curr Opin Colloid Interface Sci 4:300–307CrossRefGoogle Scholar
  7. 7.
    Mukhopadhyay A, Granick S (2001) Micro- and nanorheology. Curr Opin Colloid Interface Sci 6:423–429CrossRefGoogle Scholar
  8. 8.
    Waigh TA (2005) Microrheology of complex fluids. Reports Prog Phys 68:685–742CrossRefGoogle Scholar
  9. 9.
    Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Ann Rev Fluid Mech 42:413–438CrossRefGoogle Scholar
  10. 10.
    Furst EM (2005) Applications of laser tweezers in complex fluid rheology. Curr Opin Colloid Interface Sci 10:79–86CrossRefGoogle Scholar
  11. 11.
    Tassieri M, Waigh TA, Trinick J, Aggeli A, Evans RML (2010) Analysis of the linear viscoelasticity of polyelectrolytes by magnetic microrheometry—Pulsed creep experiments and the one particle response. J Rheol (N Y N Y) 54:117–131Google Scholar
  12. 12.
    Wagner J, Fischer B, Autenrieth T, Hempelmann R (2006) Structure and dynamics of charged magnetic colloids. J Phys Condens Matter 18:S2697–S2711CrossRefGoogle Scholar
  13. 13.
    Barrera C, Florián-Algarin V, Acevedo A, Rinaldi C (2010) Monitoring gelation using magnetic nanoparticles. Soft Matter 6:3662–3668CrossRefGoogle Scholar
  14. 14.
    Calero-Diaz del Castillo VL, Santiago-Quiñonez DI, Rinaldi C (2011) Quantitative nanoscale viscosity measurements using magnetic nanoparticles and SQUID AC susceptibility measurements. Soft Matter 7:4497–4503Google Scholar
  15. 15.
    Ludwig F, Guillaume A, Schilling M, Frickel N, Schmidt AM (2010) Determination of core and hydrodynamic size distributions of CoFe2O4 nanoparticle suspensions using ac susceptibility measurements. J Appl Phys 108:033918Google Scholar
  16. 16.
    Frickel N, Gottlieb M, Schmidt AM (2011) Hybrid nanocomposites based on superparamagnetic and ferromagnetic particles: a comparison of their magnetic and dielectric properties. Polymer (Guildf) 52:1781–1787CrossRefGoogle Scholar
  17. 17.
    Feyen M, Heim E, Ludwig F, Schmidt A (2008) Magnetic nanorotors with tailored field-induced dynamics. Chem Mater 20:2942–2948CrossRefGoogle Scholar
  18. 18.
    Kaiser A, Schmidt AM (2008) Phase behavior of polystyrene-brush-coated nanoparticles in cyclohexane. J Phys Chem B 112:1894–1898CrossRefGoogle Scholar
  19. 19.
    DiMarzio EA, Bishop M (1974) Connection between the macroscopic electric and mechanical susceptibilities. J Chem Phys 60:3802–3811Google Scholar
  20. 20.
    Niss K, Jakobsen B, Olsen NB (2005) Dielectric and shear mechanical relaxations in glass-forming liquids: a test of the Gemant-DiMarzio-Bishop model. J Chem Phys 123:234510CrossRefGoogle Scholar
  21. 21.
    Havriliak S, Havriliak SJ (1995) Comparison of dielectric theories that explicitly include viscoelastic parameters. J Polym Sci Part B Polym Phys 33:2245–2252CrossRefGoogle Scholar
  22. 22.
    Díaz-Calleja R, Garcia-Bernabé A, Sanchis M, del Castillo L (2005) Interconversion of mechanical and dielectrical relaxation measurements for dicyclohexylmethyl-2-methyl succinate. Phys Rev E 72:051505CrossRefGoogle Scholar
  23. 23.
    Cai L, Panyukov S, Rubinstein M (2011) Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 7853–7863Google Scholar
  24. 24.
    Kaiser A, Dutz S, Schmidt AM (2009) Kinetic studies of surface-initiated atom transfer radical polymerization in the synthesis of magnetic fluids. J Polym Sci Part A Polym Chem 47:7012–7020CrossRefGoogle Scholar
  25. 25.
    Dobbrow C, Schmidt AM (2012) Improvement of the oxidation stability of cobalt nanoparticles. Beilstein J Nanotechnol 3:75–81CrossRefGoogle Scholar
  26. 26.
    Marten GU, Gelbrich T, Ritter H, Schmidt AM (2012) Functionalized magnetic polymer brushes. IEEE Trans Magn 49:364–370CrossRefGoogle Scholar
  27. 27.
    Gürler C, Feyen M, Behrens S, Matoussevitch N, Schmidt AM (2008) One-step synthesis of functional Co nanoparticles for surface-initiated polymerization. Polymer (Guildf) 49:2211–2216Google Scholar
  28. 28.
    Xiao L, Li J, Brougham DF, Fox EK, Feliu N, Bushmelev A, Schmidt AM, Mertens N, Kiessling F, Valldor M, Fadeel B, Mathur S (2011) Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5:6315–6324Google Scholar
  29. 29.
    Gelbrich T, Feyen M, Schmidt AM (2006) Magnetic polymer brushes: towards tailor-made stabilization of magnetic fluids by surface-initiated polymerization. Z Phys Chem 220:41–49Google Scholar
  30. 30.
    Schmidt AM (2005) The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of ε-caprolactone. Macromol Rapid Commun 26:93–97Google Scholar
  31. 31.
    Marten GU, Gelbrich T, Schmidt AM (2010) Hybrid biofunctional nanostructures as stimuli-responsive catalytic systems. Beilstein J Org Chem 6:922–931Google Scholar
  32. 32.
    Roeder L, Bender P, Tschöpe A, Birringer R, Schmidt AM (2012) Shear modulus determination in model hydrogels by means of elongated magnetic nanoprobes. J Polym Sci Part B Polym Phys 50:1772–1781Google Scholar
  33. 33.
    Sun S, Zeng H, Robinson D (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 4:126–132Google Scholar
  34. 34.
    Dai Q, Lam M, Swanson S Yu, RHR, Milliron DJ, Topuria T, Jubert PO, Nelson A (2010) Monodisperse cobalt ferrite nanomagnets with uniform silica coatings. Langmuir 26:17546–17551Google Scholar
  35. 35.
    Veverka M, Veverka P, Kaman O, Lančok A, Závěta K, Pollert E, Knížek K, Boháček J, Beneš M, Kašpar P, Duguet E, Vasseur S (2007) Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18:345704Google Scholar
  36. 36.
  37. 37.
    Cragoe CS (1943) Properties of ethylene glycol and its aqueous solutions. Natl. Bur. Stand. WashingtGoogle Scholar
  38. 38.
    Jerome FS, Tseng JT, Fan LT (1968) Viscosities of aqueous glycol solutions. J Chem Eng Data 13:496–496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eric Roeben
    • 1
  • Lisa Roeder
    • 1
  • Sandra Teusch
    • 1
  • Marc Effertz
    • 1
  • Ulrich K. Deiters
    • 1
  • Annette M. Schmidt
    • 1
  1. 1.Department für Chemie, Institut für Physikalische ChemieUniversität zu KölnKölnGermany

Personalised recommendations