Colloid and Polymer Science

, Volume 292, Issue 8, pp 1785–1793 | Cite as

Thermosensitive hollow Janus dumbbells

  • Fangfang Chu
  • Frank Polzer
  • Nikolai Severin
  • Yan Lu
  • Andreas Ott
  • Jürgen P. Rabe
  • Matthias Ballauff
Original Contribution

Abstract

Thermosensitive hollow Janus dumbbells, consisting of two partially fused hollow poly (N-isopropylacrylamide) (PNIPAM) spheres, were prepared using dumbbell-shaped microgels as templates. One sphere has a shell completely made of PNIPAM while the other one has a hybrid shell, which is a poly(styrene-co-3-(trimethoxysilyl)propyl methacrylate) layer covered by PNIPAM. The morphology of hollow Janus dumbbells is fully characterized by cryo- and transmission electron microscopy, scanning force microscopy, and dynamic light scattering. Transmission electron microscopy demonstrates that the particles have a very narrow size distribution. The analysis by depolarized dynamic light scattering showed that the hollow Janus dumbbells exhibit a thermosensitive behavior comparable to the dumbbell-shaped microgels before the removal of the core.

Keywords

Hollow microgel Thermosensitive Janus dumbbells 

Supplementary material

396_2014_3287_MOESM1_ESM.docx (595 kb)
ESM 1(DOCX 595 kb)

References

  1. 1.
    Walther A, Müller AHE (2013) Chem Rev 113:5194CrossRefGoogle Scholar
  2. 2.
    Hu J, Zhou S, Sun Y, Fang X, Wu L (2012) Chem Soc Rev 41:4356CrossRefGoogle Scholar
  3. 3.
    Walther A, Müller AH (2008) Soft Matter 4:663CrossRefGoogle Scholar
  4. 4.
    Yuet KP, Hwang DK, Haghgooie R, Doyle PS (2010) Langmuir 26:4281CrossRefGoogle Scholar
  5. 5.
    Du J, O’Reilly RK (2011) Chem Soc Rev 40:2402CrossRefGoogle Scholar
  6. 6.
    Sciortino F, Giacometti A, Pastore G (2009) Phys Rev Lett 103:237801CrossRefGoogle Scholar
  7. 7.
    Chen Q, Whitmer JK, Jiang S, Bae SC, Luijten E, Granick S (2011) Science 331:199CrossRefGoogle Scholar
  8. 8.
    Yan J, Bloom M, Bae SC, Luijten E, Granick S (2012) Nature 491:578CrossRefGoogle Scholar
  9. 9.
    Chen RT, Muir BW, Such GK, Postma A, McLean KM, Caruso F (2010) ChCom 46:5121Google Scholar
  10. 10.
    Park BJ, Choi C-H, Kang S-M, Tettey KE, Lee C-S, Lee D (2013) Soft MatterGoogle Scholar
  11. 11.
    Walther A, André X, Drechsler M, Abetz V, Müller AH (2007) J Am Chem Soc 129:6187CrossRefGoogle Scholar
  12. 12.
    Ruhland TM, Gröschel AH, Ballard N, Skelhon TS, Walther A, Müller AHE, Bon SAF (2013) Langmuir 29:1388CrossRefGoogle Scholar
  13. 13.
    Chen Q, Li Q, Lin J (2011) MCP 128:377Google Scholar
  14. 14.
    Park BJ, Lee D (2011) ACS Nano 6:782CrossRefGoogle Scholar
  15. 15.
    Tu F, Park BJ, Lee D (2013) LangmuirGoogle Scholar
  16. 16.
    Nagao D, Sugimoto M, Okada A, Ishii H, Konno M, Imhof A, van Blaaderen A (2012) Langmuir 28:6546CrossRefGoogle Scholar
  17. 17.
    Mock EB, Zukoski CF (2007) J Rheol 51:541CrossRefGoogle Scholar
  18. 18.
    Mock EB, De Bruyn H, Hawkett BS, Gilbert RG, Zukoski CF (2006) Langmuir 22:4037CrossRefGoogle Scholar
  19. 19.
    Tang C, Zhang C, Liu J, Qu X, Li J, Yang Z (2010) Macromolecules 43:5114CrossRefGoogle Scholar
  20. 20.
    Nagao D, van Kats CM, Hayasaka K, Sugimoto M, Konno M, Imhof A, van Blaaderen A (2010) Langmuir 26:5208CrossRefGoogle Scholar
  21. 21.
    Skotheim J, Secomb T (2007) Phys Rev Lett 98:078301CrossRefGoogle Scholar
  22. 22.
    Yuan J, Wang Z (2011) J Colloid Interface Sci 362:15CrossRefGoogle Scholar
  23. 23.
    Sukhorukov G, Fery A, Möhwald H (2005) Prog Polym Sci 30:885CrossRefGoogle Scholar
  24. 24.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101CrossRefGoogle Scholar
  25. 25.
    Smith MH, Lyon LA (2011) Acc Chem Res 45:985CrossRefGoogle Scholar
  26. 26.
    DiLauro AM, Abbaspourrad A, Weitz DA, Phillips ST (2013) Macromolecules 46:3309CrossRefGoogle Scholar
  27. 27.
    Nayak S, Gan D, Serpe MJ, Lyon LA (2005) Small 1:416CrossRefGoogle Scholar
  28. 28.
    Velasco D, Chau M, Thérien-Aubin H, Kumachev A, Tumarkin E, Jia Z, Walker GC, Monteiro MJ, Kumacheva E (2013) Soft Matter 9:2380CrossRefGoogle Scholar
  29. 29.
    Park JG, Forster JD, Dufresne ER (2010) J Am Chem Soc 132:5960CrossRefGoogle Scholar
  30. 30.
    Chu FF, Siebenburger M, Polzer F, Stolze C, Kaiser J, Hoffmann M, Heptner N, Dzubiella J, Drechsler M, Lu Y, Ballauff M (2012) Macromol Rapid Commun 33:1042CrossRefGoogle Scholar
  31. 31.
    Forster JD, Park J-G, Mittal M, Noh H, Schreck CF, O’Hern CS, Cao H, Furst EM, Dufresne ER (2011) ACS Nano 5:6695CrossRefGoogle Scholar
  32. 32.
    Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M, Drechsler M (2009) Langmuir 25:7862CrossRefGoogle Scholar
  33. 33.
    Bourgeat-Lami E, Tissot I, Lefebvre F (2002) Macromolecules 35:6185CrossRefGoogle Scholar
  34. 34.
    Zhang F, Wang CC (2008) Colloid Polym Sci 286:889CrossRefGoogle Scholar
  35. 35.
    Hoffmann M, Lu Y, Schrinner M, Ballauff M, Harnau L (2008) J Phys Chem B 112:14843CrossRefGoogle Scholar
  36. 36.
    Bolisetty S, Hoffmann M, Lekkala S, Hellweg T, Ballauff M, Harnau L (2009) Macromolecules 42:1264CrossRefGoogle Scholar
  37. 37.
    Mul G, Zwijnenburg A, van der Linden B, Makkee M, Moulijn JA (2001) J Catal 201:128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fangfang Chu
    • 1
  • Frank Polzer
    • 2
  • Nikolai Severin
    • 2
  • Yan Lu
    • 1
  • Andreas Ott
    • 1
  • Jürgen P. Rabe
    • 2
  • Matthias Ballauff
    • 1
    • 2
  1. 1.Soft Matter and Functional MaterialsHelmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  2. 2.Department of Physics & IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations