Colloid and Polymer Science

, Volume 292, Issue 8, pp 1757–1774 | Cite as

Novel thermoresponsive block copolymers having different architectures—structural, rheological, thermal, and dielectric investigations

  • Konstantinos Kyriakos
  • Dionysia Aravopoulou
  • Lukas Augsbach
  • Josef Sapper
  • Sarah Ottinger
  • Christina Psylla
  • Ali Aghebat Rafat
  • Carlos Adrian Benitez-Montoya
  • Anna Miasnikova
  • Zhenyu Di
  • André Laschewsky
  • Peter Müller-Buschbaum
  • Apostolos Kyritsis
  • Christine M. Papadakis
Original Contribution


Thermoresponsive block copolymers comprising long, hydrophilic, nonionic poly(methoxy diethylene glycol acrylate) (PMDEGA) blocks and short hydrophobic polystyrene (PS) blocks are investigated in aqueous solution. Various architectures, namely diblock, triblock, and starblock copolymers are studied as well as a PMDEGA homopolymer as reference, over a wide concentration range. For specific characterization methods, polymers were labeled, either by partial deuteration (for neutron scattering studies) or by fluorophores. Using fluorescence correlation spectroscopy, critical micellization concentrations are identified and the hydrodynamic radii of the micelles, rhmic, are determined. Using dynamic light scattering, the behavior of rhmic in dependence on temperature and the cloud points are measured. Small-angle neutron scattering enabled the detailed structural investigation of the micelles and their aggregates below and above the cloud point. Viscosity measurements are carried out to determine the activation energies in dependence on the molecular architecture. Differential scanning calorimetry at high polymer concentration reveals the glass transition of the polymers, the fraction of uncrystallized water and effects of the phase transition at the cloud point. Dielectric relaxation spectroscopy shows that the polarization changes reversibly at the cloud point, which reflects the formation of large aggregates upon heating through the cloud point and their redissolution upon cooling.


Block copolymers Thermoresponsive Structural investigations Mechanical properties Thermal behavior Dielectric properties 


  1. 1.
    Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A 2:1441–1455CrossRefGoogle Scholar
  2. 2.
    Aseyev V, Tenhu H, Winnik FM (2011) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89CrossRefGoogle Scholar
  3. 3.
    Gorelov AV, Du Chesne A, Dawson KA (1997) Phase separation in dilute solutions of poly(N-isopropylacrylamide). Physica A 240:443–452CrossRefGoogle Scholar
  4. 4.
    Aseyev V, Hietala S, Laukkanen A, Nuopponen M, Confortini O, Du Prez FE, Tenhu H (2005) Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer 46:7118–7131CrossRefGoogle Scholar
  5. 5.
    Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  6. 6.
    Maeda Y, Higuchi T, Ikeda I (2001) FTIR spectroscopic and calorimetric studies of the phase transitions of N-isopropylacrylamide copolymers in water. Langmuir 17:7535–7539CrossRefGoogle Scholar
  7. 7.
    Okada Y, Tanaka F (2005) Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 38:4465–4471CrossRefGoogle Scholar
  8. 8.
    Philipp M, Kyriakos K, Silvi L, Lohstroh W, Petry W, Krüger JK, Papadakis CM, Müller-Buschbaum P (2014) From molecular dehydration to excess volumes of phase separating PNIPAM solutions. J Phys Chem B 118:4253–4260CrossRefGoogle Scholar
  9. 9.
    Wang X, Qiu X, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31:2972–2976CrossRefGoogle Scholar
  10. 10.
    Meier-Koll A, Pipich V, Busch P, Papadakis CM, Müller-Buschbaum P (2012) Phase separation in semidilute aqueous poly(N-isopropylacrylamide) solutions. Langmuir 28:8791–8798CrossRefGoogle Scholar
  11. 11.
    Philipp M, Müller U, Aleksandrova R, Sanctuary R, Müller-Buschbaum P, Krüger JK (2013) Immense elastic nonlinearities at the demixing transition of aqueous PNIPAM solutions. Soft Matter 9:5034–5041CrossRefGoogle Scholar
  12. 12.
    Miasnikova A, Laschewsky A (2012) Influencing the phase transition temperature of poly(methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture. J Polym Sci A Polym Chem 50:3133–3323CrossRefGoogle Scholar
  13. 13.
    Miasnikova A, Laschewsky A, De Paoli G, Papadakis CM, Müller-Buschbaum P, Funari SS (2012) Thermoresponsive hydrogels from symmetrical triblock copolymers poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene). Langmuir 28:4479–4490CrossRefGoogle Scholar
  14. 14.
    Zhang W, Zhou X, Li H, Fang Y, Zhang G (2005) Conformational transition of tethered poly(N-isopropylacrylamide) chains in coronas of micelles and vesicles. Macromolecules 38:909–914CrossRefGoogle Scholar
  15. 15.
    Zhou X, Ye X, Zhang G (2007) Thermoresponsive triblock copolymer aggregates investigated by laser light scattering. J Phys Chem B 111:5111–5115CrossRefGoogle Scholar
  16. 16.
    Troll K, Kulkarni A, Wang W, Darko C, Bivigou Koumba AM, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2008) The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films. Colloid Polym Sci 286:1079–1092CrossRefGoogle Scholar
  17. 17.
    Adelsberger J, Kulkarni A, Jain A, Wang W, Bivigou-Koumba AM, Busch P, Pipich V, Holderer O, Hellweg T, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2010) Thermoresponsive PS-b-PNIPAM-b-PS micelles: aggregation behavior, segmental dynamics, and thermal response. Macromolecules 43:2490–2501CrossRefGoogle Scholar
  18. 18.
    Adelsberger J, Meier-Koll A, Bivigou-Koumba AM, Busch P, Holderer O, Laschewsky P, Müller-Buschbaum P, Papadakis CM (2011) The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers. Colloid Polym Sci 289:711–720CrossRefGoogle Scholar
  19. 19.
    Adelsberger J, Shen X, Bivigou-Koumba AM, Miasnikova A, Golosova A, Funari SS, Busch P, Laschewsky A, Müller-Buschbaum P, Papadakis CM. Poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene) triblock copolymers—a combined SAXS and SANS study of the switching behaviour. In revisionGoogle Scholar
  20. 20.
    Zhong Q, Adelsberger J, Niedermeier MA, Golosova A, Bivigou-Koumba AM, Laschewsky A, Funari SS, Papadakis CM, Müller-Buschbaum P (2013) The influence of selective solvents on the transition behavior of poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) thick films. Colloid Polym Sci 291:1439–1451CrossRefGoogle Scholar
  21. 21.
    Zhong Q, Metwalli E, Rawolle M, Kaune G, Bivigou-Koumba AN, Laschewsky A, Papadakis CM, Cubitt R, Müller-Buschbaum P (2013) Structure and thermal response of thin thermoresponsive polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene films. Macromolecules 46:4069–4080CrossRefGoogle Scholar
  22. 22.
    Laschewsky A, Müller-Buschbaum P, Papadakis CM (2013) Thermo-responsive amphiphilic di- and triblock copolymers based on poly(N-isopropylacrylamide) and poly(methoxy diethylene glycol acrylate): aggregation and hydrogel formation in bulk solution and in thin films. Prog Colloid Polym Sci 140:15–34Google Scholar
  23. 23.
    Nguyen T, Francis MB (2003) Practical synthetic route to functionalized rhodamine dyes. Org Lett 5:3245–3248CrossRefGoogle Scholar
  24. 24.
    Skrabania K, Miasnikova A, Bivigou-Koumba AM, Zehm D, Laschewsky A (2011) Examining the UV–vis absorption of RAFT chain transfer agents, and their use for polymer analysis. Polym Chem 2:2074–2083CrossRefGoogle Scholar
  25. 25.
    Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379CrossRefGoogle Scholar
  26. 26.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. An experimental realization. Biopolymers 13:29–61CrossRefGoogle Scholar
  27. 27.
    Jakeš J (1988) Czech J Phys B 38:1305–1316CrossRefGoogle Scholar
  28. 28.
    Bartlett P, Ottewill RH (1992) A neutron scattering study of the structure of a bimodal colloidal crystal. J Chem Phys 96:3306–3318CrossRefGoogle Scholar
  29. 29.
    Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110:1–13CrossRefGoogle Scholar
  30. 30.
    Kinning DJ, Thomas EL (1984) Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules 17:1712–1718CrossRefGoogle Scholar
  31. 31.
    Posselt D, Pedersen JS, Mortensen K (1992) A SANS investigation on absolute scale of a homologous series of base-catalysed silica aerogels. J Non-Cryst Solids 145:128–132CrossRefGoogle Scholar
  32. 32.
    Schmidt PW (1982) Interpretation of small-angle scattering curves proportional to a negative power of the scattering vector. J Appl Crystallogr 15:567–569CrossRefGoogle Scholar
  33. 33.
    Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900CrossRefGoogle Scholar
  34. 34.
    Kremer F, Schönhals A (eds) (2002) Broadband dielectric spectroscopy. Springer, BerlinGoogle Scholar
  35. 35.
    Schuch H, Klingler J, Rossmanith P, Frechen T, Gerst M, Feldthusen J, Müller AHE (2000) Characterization of micelles of polyisobutylene-block-poly(methacrylic acid) in aqueous medium. Macromolecules 33:1734–1740CrossRefGoogle Scholar
  36. 36.
    Humpolíčková J, Procházka K, Hof M, Tuzar Z, Špírková M (2003) Fluorescence correlation spectroscopy using octadecylrhodamine B as a specific micelle-binding fluorescent tag; light scattering and tapping mode atomic force microscopy studies of amphiphilic water-soluble block copolymer micelles. Langmuir 19:4111–4119CrossRefGoogle Scholar
  37. 37.
    Bonné TB, Lüdtke K, Jordan R, Štěpánek P, Papadakis CM (2004) Aggregation behavior of amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers in aqueous solution studied by fluorescence correlation spectroscopy. Colloid Polym Sci 282:833–843CrossRefGoogle Scholar
  38. 38.
    Loos K, Böker A, Zettl H, Zhang M, Krausch G (2005) Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF. Macromolecules 38:873–879CrossRefGoogle Scholar
  39. 39.
    Bonné TB, Lüdtke K, Jordan R, Papadakis CM (2007) Effect of polymer architecture of amphiphilic poly(2-oxazoline) copolymers on the aggregation and aggregate structure. Macromol Chem Phys 208:1402–1408CrossRefGoogle Scholar
  40. 40.
    Colombani O, Ruppel M, Schubert F, Zettl H, Pergushov DV, Müller AHE (2007) Synthesis of Poly(n-butyl acrylate)-block-poly(acrylic acid) diblock copolymers by ATRP and their micellization in water. Macromolecules 40:4338–4350CrossRefGoogle Scholar
  41. 41.
    Koynov K, Butt H-J (2012) Fluorescence correlation spectroscopy in colloid and interface science. Curr Opin Colloid Interface Sci 17:377–387CrossRefGoogle Scholar
  42. 42.
    Wöll D (2014) Fluorescence correlation spectroscopy in polymer science. RSC Adv 4:2447–2465CrossRefGoogle Scholar
  43. 43.
    Bonné TB, Papadakis CM, Lüdtke K, Jordan R (2007) Role of the tracer in characterizing the aggregation behavior of aqueous block copolymer solutions using fluorescence correlation spectroscopy. Colloid Polym Sci 285:491–497CrossRefGoogle Scholar
  44. 44.
    Dean JA (1999) Lange’s Handbook of Chemistry. McGraw-Hill, New York, p 6.115Google Scholar
  45. 45.
    Panagopoulou A, Kyritsis A, Aravantinou AM, Nanopoulos D, Sabater i Serra R, Gómez Ribellez JL, Shinyashiki N, Pissis P (2011) Glass transition and dynamics in lysozyme-water mixtures over wide ranges of composition. Food Biophys 6:199–209CrossRefGoogle Scholar
  46. 46.
    Bordi F, Cametti C, Colby RH (2004) Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J Phys Condens Matter 16:R1423–R1463CrossRefGoogle Scholar
  47. 47.
    Masci G, Ladogana RD, Cametti C (2011) Assemblies of thermoresponsive diblock copolymers: micelle and vesicle formation investigated by means of dielectric relaxation spectroscopy. J Phys Chem B 115:2196–2204CrossRefGoogle Scholar
  48. 48.
    Zhou J, Wei J, Ngai T, Wang L, Zhu D, Shen J (2012) Correlation between dielectric/electric properties and cross-linking/charge density distributions of thermally sensitive spherical PNIPAM microgels. Macromolecules 45:6158–6167CrossRefGoogle Scholar
  49. 49.
    Füllbrandt M, von Klitzing R, Schönhals A (2013) The dielectric signature of poly(N-isopropylacrylamide) microgels at the volume phase transition: dependence on the crosslinking density. Soft Matter 9:4464–4471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Konstantinos Kyriakos
    • 1
  • Dionysia Aravopoulou
    • 2
  • Lukas Augsbach
    • 1
  • Josef Sapper
    • 1
  • Sarah Ottinger
    • 1
  • Christina Psylla
    • 1
  • Ali Aghebat Rafat
    • 1
  • Carlos Adrian Benitez-Montoya
    • 3
  • Anna Miasnikova
    • 3
  • Zhenyu Di
    • 4
  • André Laschewsky
    • 3
    • 5
  • Peter Müller-Buschbaum
    • 1
  • Apostolos Kyritsis
    • 2
  • Christine M. Papadakis
    • 1
  1. 1.Physik-Department, Fachgebiet Physik weicher Materie/Lehrstuhl Physik funktioneller MaterialienTechnische Universität MünchenGarchingGermany
  2. 2.Physics DepartmentNational Technical University of AthensAthensGreece
  3. 3.Institut für ChemieUniversität PotsdamPotsdam-GolmGermany
  4. 4.Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at MLZGarchingGermany
  5. 5.Fraunhofer Institut für Angewandte PolymerforschungPotsdam-GolmGermany

Personalised recommendations