Colloid and Polymer Science

, Volume 292, Issue 8, pp 1825–1839 | Cite as

NMR study of interphase structure in layered polymer morphologies with mobility contrast: disorder and confinement effects vs. dynamic heterogeneities

  • Matthias Roos
  • Kerstin Schäler
  • Anne Seidlitz
  • Thomas Thurn-Albrecht
  • Kay SaalwächterEmail author
Original Contribution


Nanostructured multiphase polymers with mobility contrast, such as semicrystalline polymers or block copolymers with two separate glass transitions, are usually characterized by the presence of an interphase material with in-between mobility. This interphase is often assumed to form a contiguous layer between the adjacent main phases, possibly exhibiting a mobility gradient. Here, we present evidence from proton low-field NMR experiments based upon the spin diffusion effect that suggests less trivial possible arrangements. A numerical analysis of the NMR data based upon a 2D lattice model demonstrates that a part of the mobile phase must be in rather direct contact with the rigid phase. Tentatively, we assume an island-like distribution of the interphase, or its location within the rigid phase, with sizes on the scale of a few nanometers. We observe qualitatively the same phenomenon in a semicrystalline polymer, poly(ε-caprolactone), and in a lamellar poly(styrene)-poly(butadiene) block copolymer, suggesting that the phenomenon has some degree of universality. We hypothesize that the non-trivial location of the interphase results from either a higher than one-dimensional constraint imposed by the surrounding rigid phase and disorder effects arising from local roughness or thickness distributions or from the intrinsic dynamic heterogeneity length scale of material close to the glass transition.


Heterogeneous polymers Polymer morphology Interphase Semicrystalline polymers Block copolymers Phase separation in solid polymers NMR spin diffusion 



We thank Horst Schneider and Günter Hempel for the fruitful discussions and comments, and their help in the initial states of this study, and Ilja Gunkel for additional SAXS data. Funding of this work was provided by the Deutsche Forschungsgemeinschaft (SA982/6-1 and SFB-TRR 102 project A1). We also acknowledge the infrastructural support from the European Union (ERDF program).


  1. 1.
    Strobl G (2007) The physics of polymers. Springer, BerlinGoogle Scholar
  2. 2.
    Wunderlich B (2003) Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28:383–450CrossRefGoogle Scholar
  3. 3.
    Schick C, Wurm A, Mohamed A (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806CrossRefGoogle Scholar
  4. 4.
    Mano JF, Ribelles JLG, Alves NM, Sanchez MS (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265CrossRefGoogle Scholar
  5. 5.
    Jonas A, Legras R (1993) Relaxation between PEEK semicrystalline morphology and its subglass relaxations and glass-transition. Macromolecules 26:813–824CrossRefGoogle Scholar
  6. 6.
    Iannace S, Nicolais L (1997) Isothermal crystallization and chain mobility of poly(L-lactide). J Appl Polym Sci 64:911–919CrossRefGoogle Scholar
  7. 7.
    McBrierty VJ, Packer KJ (1993) Nuclear magnetic resonance in solid polymers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Kitamaru R, Horii F (1978) NMR approach to the phase structure of linear polyethylene. Adv Polym Sci 26:137CrossRefGoogle Scholar
  9. 9.
    Hansen EW, Kristiansen PE, Pedersen B (1998) Crystallinity of polyethylene derived from solid-state proton NMR free induction decay. J Phys Chem B 102:5444–5450CrossRefGoogle Scholar
  10. 10.
    Litvinov VM, Penning JP (2004) Phase composition and molecular mobility in nylon 6 fibers as studied by proton NMR transverse magnetization relaxation. Macromol Chem Phys 205:1721–1734CrossRefGoogle Scholar
  11. 11.
    Yao Y-F, Graf R, Spiess HW, Rastogi S (2008) Restricted segmental mobility can facilitate medium-range chain diffusion: a NMR study of morphological influence on chain dynamics of polyethylene. Macromolecules 41:2514–2519CrossRefGoogle Scholar
  12. 12.
    Saalwächter K, Thomann Y, Hasenhindl A, Schneider H (2008) Direct observation of interphase composition in block copolymers. Macromolecules 41:9187–9191CrossRefGoogle Scholar
  13. 13.
    Hashimoto T, Shibayama M, Kawai H (1980) Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecular-weight dependence of lamellar microdomains. Macromolecules 13:1237–1247CrossRefGoogle Scholar
  14. 14.
    Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1990) The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. J Chem Phys 92:5677–5691CrossRefGoogle Scholar
  15. 15.
    Noro A, Okuda M, Odamaki F, Kawaguchi D, Torikai N, Takano A, Matsuhita Y (2006) Chain localization and interfacial thickness in microphase-separated structures of block copolymers with variable composition distributions. Macromolecules 39:7654–7661CrossRefGoogle Scholar
  16. 16.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, LondonGoogle Scholar
  17. 17.
    Havens JR, VanderHart DL (1985) Morphology of poly(ethylene terephthalate) fibers as studied by multiple-pulse 1H NMR. Macromolecules 18:1663–1676CrossRefGoogle Scholar
  18. 18.
    Clauss J, Schmidt-Rohr K, Spiess HW (1994) Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym 44:1–17CrossRefGoogle Scholar
  19. 19.
    VanderHart DL, McFadden GB (1996) Some perspectives on the interpretation of proton NMR spin diffusion data in terms of polymer morphologies. Sol State NMR 7:45–66CrossRefGoogle Scholar
  20. 20.
    Sadler DM, Keller A (1970) Polyethylene crystals with dislocation networks; their origin structure and relevance to polymer crystallization (part I). Kolloid Z Z Polym 239:641–654CrossRefGoogle Scholar
  21. 21.
    Sadler DM, Keller A (1970) Polyethylene crystals with dislocation networks; their origin structure and relevance to polymer crystallization (part II). Kolloid Z Z Polym 242:1082–1092CrossRefGoogle Scholar
  22. 22.
    Sadler DM (1983) Roughness of growth faces of polymer crystals: evidence from morphology and implications for growth mechanisms and types of folding. Polymer 24:1401–1409CrossRefGoogle Scholar
  23. 23.
    Sadler DM, Gilmer GH (1984) A model for chain folding in polymer crystals: rough growth faces are consistent with the observed growth rates. Polymer 25:1446–1452CrossRefGoogle Scholar
  24. 24.
    Sadler DM, Wills HH (1985) Rough-surface crystallization: some applications to poly(ethylene oxide). J Polym Sci 23:1533–1554Google Scholar
  25. 25.
    Sadler DM (1987) New explanation for chain folding in polymers. Nature 326:174–177CrossRefGoogle Scholar
  26. 26.
    Mullin N, Hobbs JK (2011) Direct imaging of polyethylene films at single-chain resolution with torsional tapping atomic force microscopy. Phys Rev Lett 107:197801CrossRefGoogle Scholar
  27. 27.
    Meyer H, Müller-Plathe F (2001) Formation of chain-folded structures in supercooled polymer melts. J Chem Phys 115:7807–7810CrossRefGoogle Scholar
  28. 28.
    Sommer J-U, Luo C (2010) Molecular dynamics simulations of semicrystalline polymers: crystallization, melting, and reorganization. J Polym Sci B 48:2222–2232CrossRefGoogle Scholar
  29. 29.
    Li Y, Ma Y, Li J, Jiang X, Hu W (2012) Dynamic Monte Carlo simulations of double crystallization accelerated in microdomains of diblock copolymers. J Chem Phys 136:104906CrossRefGoogle Scholar
  30. 30.
    Forrest JA, Dalnoki-Veress K (2001) The glass transition in thin polymer films. Adv Colloid Interf Sci 94:167–196CrossRefGoogle Scholar
  31. 31.
    Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R461–R524CrossRefGoogle Scholar
  32. 32.
    Tress M, Erber M, Mapesa EU, Huth H, Müller J, Serghei A, Schick C, Eichhorn KJ, Voit B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43:9937–9944CrossRefGoogle Scholar
  33. 33.
    Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K (2012) Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys Rev Lett 109:055701CrossRefGoogle Scholar
  34. 34.
    Tress M, Mapesa EU, Kossak W, Kipnusu WK, Reiche M, Kremer F (2013) Glassy dynamics in condensed isolated polymer chains. Science 341:1371–1374CrossRefGoogle Scholar
  35. 35.
    Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc 133:8444–8447CrossRefGoogle Scholar
  36. 36.
    Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur Phys J E 36:61CrossRefGoogle Scholar
  37. 37.
    Litvinov VM, Zhdanov AA (1987) Molecular motions in filled polydimethylsiloxanes. Vysokomol Soed Ser A 29:1021–1027Google Scholar
  38. 38.
    Litvinov VM, Barthel H, Weis J (2002) Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR. Macromolecules 35:4356–4364CrossRefGoogle Scholar
  39. 39.
    Kirst KU, Kremer F, Litvinov VM (1993) Broad-band dielectric-spectroscopy on the molecular-dynamics of bulk and adsorbed poly(dimethylsiloxane). Macromolecules 26:975–980CrossRefGoogle Scholar
  40. 40.
    Mauri M, Thomann Y, Schneider H, Saalwächter K (2008) Spin-diffusion NMR at low field for the study of multiphase solids. Sol State NMR 34:125–141CrossRefGoogle Scholar
  41. 41.
    Crescenzi V, Manzini G, Calzolar G, Borri C (1972) Thermodynamics of fusion of polypropriolactone and poly-ε-caprolactone. Comparative analysis of melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463CrossRefGoogle Scholar
  42. 42.
    Schäler K, Achilles A, Bärenwald R, Hackel C, Saalwächter K (2013) Dynamics in crystallites of poly(ε-caprolactone) as investigated by solid-state NMR. Macromolecules 46:7818–7825CrossRefGoogle Scholar
  43. 43.
    Meyer HW, Schneider H, Saalwächter K (2012) Proton NMR spin-diffusion studies of PS-PB block copolymers at low field: two- vs three-phase model and recalibration of spin-diffusion coefficients. Polym J 44:748–756CrossRefGoogle Scholar
  44. 44.
    Kratky O, Stabinger H (1984) Colloid Polym Sci 262:345CrossRefGoogle Scholar
  45. 45.
    Strobl G (1970) Acta Crystallogr A 26:367CrossRefGoogle Scholar
  46. 46.
    Albrecht T, Strobl G (1995) Macromolecules 28:5827–5833CrossRefGoogle Scholar
  47. 47.
    Maus A, Hertlein C, Saalwächter K (2006) A robust proton NMR method to investigate hard/soft ratios, crystallinity, and component mobility in polymers. Macromol Chem Phys 207:1150–1158CrossRefGoogle Scholar
  48. 48.
    Abragam A (1961) The principles of nuclear magnetism. Oxford Univ. Press, OxfordGoogle Scholar
  49. 49.
    Ba Y, Ripmeester JA (1998) Multiple quantum filtering and spin exchange in solid state nuclear magnetic resonance. J Chem Phys 108:8589–8594CrossRefGoogle Scholar
  50. 50.
    Demco DE, Johansson A, Tegenfeldt J (1995) Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson 4:13–38CrossRefGoogle Scholar
  51. 51.
    Buda A, Demco DE, Bertmer M, Bluemich B, Reining B, Keul H, Hoecker H (2003) Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters. Sol State NMR 24:39–67CrossRefGoogle Scholar
  52. 52.
    Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426CrossRefGoogle Scholar
  53. 53.
    Chen Q, Schmidt-Rohr K (2006) Measurement of the local 1H spin-diffusion coefficient in polymers. Sol State NMR 29:142–152CrossRefGoogle Scholar
  54. 54.
    Mellinger F, Wilhelm M, Spiess HW (1999) Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules 32:4686–4691CrossRefGoogle Scholar
  55. 55.
    Jia ZL, Zhang LL, Chen Q, Hansen EW (2008) Proton spin diffusion in polyethylene as a function of magic-angle spinning rate. A phenomenological approach. J Phys Chem A 112:1228–1233CrossRefGoogle Scholar
  56. 56.
    Roos M (2012) Nano-scale roughness of phase boundaries in heterogeneous polymers as studied by spin-diffusion NMR. Master thesis. Martin-Luther-University, Halle-WittenbergGoogle Scholar
  57. 57.
    Scheidler P, Kob W, Binder K (2002) Cooperative motion and growing length scales in supercooled confined liquids. Europhys Lett 59:701–707CrossRefGoogle Scholar
  58. 58.
    Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys Rev Lett 81:2727–2730CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthias Roos
    • 1
  • Kerstin Schäler
    • 1
  • Anne Seidlitz
    • 1
  • Thomas Thurn-Albrecht
    • 1
  • Kay Saalwächter
    • 1
    Email author
  1. 1.Institut für PhysikMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations