Colloid and Polymer Science

, Volume 292, Issue 8, pp 1939–1948 | Cite as

Switchable dielectric permittivity with temperature and Dc-bias in a semifluorinated azobenzene derivative

  • René Stangenberg
  • Christos Grigoriadis
  • Hans-Jürgen Butt
  • Klaus Müllen
  • George Floudas
Original Contribution

Abstract

The thermodynamic, optical, structural, and dynamic properties of the semifluorinated (E)-1-(4-octylphenyl)-2-(4-(perfluorooctyl)phenyl)diazene (4) and the corresponding (E)-1,2-bis(4-octylphenyl)diazene (5) have been studied with differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction, and dielectric spectroscopy. 4 combines the azobenzene properties with the fluorophobic effect and gives rise to a responsive material with a temperature and dc-bias-driven switchable dielectric permittivity within the narrower nematic phase. This is caused by the nematic potential that inevitably brings some fluorocarbon chains in proximity to the hydrocarbon chains from adjacent molecules. Frustration is alleviated by reducing the nematic-to-isotropic transition temperature and by increasing the crystalline-to-nematic transition temperature, thus limiting the stability of the nematic phase. Unlike the normal isotropic phase of compound 5, the isotropic phase of compound 4 contains dipoles with short-range orientation correlations. Optimizing the type of interactions may result in materials with applications as molecular switches and electrooptic devices.

Keywords

Dielectric permittivity Liquid crystals Molecular dynamics Dielectric Spectroscopy 

Supplementary material

396_2014_3217_MOESM1_ESM.pdf (1.7 mb)
ESM 1(PDF 1,786 kb)

References

  1. 1.
    de Gennes PG, Prost J (1993) The physics of liquid crystals. Clarendon, OxfordGoogle Scholar
  2. 2.
    Blinov LM (2011) Structure and properties of liquid crystals. Springer, HeidelbergCrossRefGoogle Scholar
  3. 3.
    Kumar S (2001) Liquid crystals. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    de Jeu WH (1977) J de Phys 38:1265–1273CrossRefGoogle Scholar
  5. 5.
    Trzaska J, Galewski Z (2009) Opto-Electron Rev 17:129–139CrossRefGoogle Scholar
  6. 6.
    Prajapati AK, Pandya HM (2005) J Chem Sci 117:255–261CrossRefGoogle Scholar
  7. 7.
    Rodriguez-González RJ, Larios-López L, Navarro-Rodriguez D (2011) Liq Cryst 38:831–839CrossRefGoogle Scholar
  8. 8.
    Barrett CJ, Mamiya J-I, Yager KG, Ikeda T (2007) Soft Matter 3:1249–1261CrossRefGoogle Scholar
  9. 9.
    Mukherjee B, Delle Site L, Kremer K, Peter C (2012) J Phys Chem B 116:8474–8484CrossRefGoogle Scholar
  10. 10.
    Riess JG (2002) Tetrahedron 58:4113CrossRefGoogle Scholar
  11. 11.
    Semenov AN, González-Pérez A, Krafft MP, Legrand J-F (2006) Langmuir 22:8703CrossRefGoogle Scholar
  12. 12.
    Weck M, Dunn AR, Matsumoto K, Coates GW, Lobkovsky EB, Grubbs RH (1999) Angew Chem Int Ed 38:2741–2745CrossRefGoogle Scholar
  13. 13.
    Rabolt JF, Russell TP, Twieg RJ (1984) Macromolecules 17:2786CrossRefGoogle Scholar
  14. 14.
    Russell TP, Rabolt JF, Twieg RJ, Siemens RL, Farmer BL (1986) Macromolecules 19:1135CrossRefGoogle Scholar
  15. 15.
    Höpken J, Möller M (1992) Macromolecules 25:2482CrossRefGoogle Scholar
  16. 16.
    Nostro PL, Chen S-H (1993) J Phys Chem 97:6535CrossRefGoogle Scholar
  17. 17.
    Marczuk P, Lang P (1998) Macromolecules 31:9013CrossRefGoogle Scholar
  18. 18.
    Rabolt JF, Fanconi B (1977) Polymer 18:1258CrossRefGoogle Scholar
  19. 19.
    Núñez E, Clark CG, Cheng W, Best A, Floudas G, Semenov AN, Fytas G, Müllen K (2008) J Phys Chem B 112:6542CrossRefGoogle Scholar
  20. 20.
    Clark CG, Floudas GA, Lee YJ, Graf R, Spiess HW, Müllen K (2009) J Am Chem Soc 131:8537CrossRefGoogle Scholar
  21. 21.
    Elmahdy MM, Clark CG Jr, Butt H-J, Müllen K, Floudas G (2012) J Phys Chem B 116:13812–13820CrossRefGoogle Scholar
  22. 22.
    Janulis EP, Osten DW, Radcliffe MD, Novack JC, Tristani-Kendra M, Epstein KA, Keyes M, Johnson GC, Savu PM, Spawn TD (1992) Proc SPIE 1665:146–153CrossRefGoogle Scholar
  23. 23.
    Thiele T, Prescher D, Ruhmann R, Wolff D (1997) J Fluor Chem 85:155–161CrossRefGoogle Scholar
  24. 24.
    Min M, Bang GS, Lee H, Yu BC (2010) Chem Commun 46:5232–5234CrossRefGoogle Scholar
  25. 25.
    Yu BC, Shirai Y, Tour M (2006) Tetrahedron 62:10303–10310CrossRefGoogle Scholar
  26. 26.
    Lux J, Rebek J (2013) Chem Commun 49:2127–2129CrossRefGoogle Scholar
  27. 27.
    Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer, BerlinGoogle Scholar
  28. 28.
    McCrum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymeric solids. Dover Publ, New YorkGoogle Scholar
  29. 29.
    Floudas G (2012) Dielectric Spectroscopy. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol. 2.32. Elsevier BV, Amsterdam, pp 825–845Google Scholar
  30. 30.
    Havriliak S, Negami S (1967) Polymer 8:161CrossRefGoogle Scholar
  31. 31.
    Floudas G, Antonietti M, Förster S (2000) J Chem Phys 113:3447CrossRefGoogle Scholar
  32. 32.
    Grigoriadis C, Duran H, Steinhart M, Kappl M, Butt H-J, Floudas G (2011) ACS Nano 5:9208–9215CrossRefGoogle Scholar
  33. 33.
    Duran H, Hartmann-Azanza B, Steinhart M, Gehrig D, Laquai F, Feng X, Müllen K, Butt H-J, Floudas G (2012) ACS Nano 6:9359–9365CrossRefGoogle Scholar
  34. 34.
    Maier W, Meier G, Saupe A (1975) Faraday Symp Chem Soc 5:119Google Scholar
  35. 35.
    Seiberle H, Stille W, Strobl G (1990) Macromolecules 23:2007–2016CrossRefGoogle Scholar
  36. 36.
    Schönhals A, Gessner U, Rübner (1995) J Macromol Chem Phys 196:1671–1685CrossRefGoogle Scholar
  37. 37.
    Sirota EB, Herhold AB (1999) Science 283:529–532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • René Stangenberg
    • 1
  • Christos Grigoriadis
    • 2
  • Hans-Jürgen Butt
    • 1
  • Klaus Müllen
    • 1
  • George Floudas
    • 2
  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.Department of PhysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations