Colloid and Polymer Science

, Volume 292, Issue 4, pp 863–871 | Cite as

Inclusion complexes of α-cyclodextrins with poly(d,l-lactic acid): structural, characterization, and glass transition dynamics

  • Tânia Oliveira
  • Gabriela Botelho
  • Natália M. AlvesEmail author
  • João F. Mano
Original Contribution


Poly (d,l-lactic acid) (PDLLA) was combined with α-CD to form inclusion complexes (ICs) with distinct PDLLA fractions. The structural changes resulting from this coalescence process were analyzed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD). The presence of both components in the ICs was confirmed by FTIR. The encapsulated PDLLA fraction was quantified by 1H NMR. XRD data evidenced that it was possible to transform the amorphous PDLLA into a well-organized channel-type crystalline structure. DSC showed that the glass transition temperature of the PDLLA fraction in the ICs was higher than in the pure polymer, indicating that the ultra-confinement effect imposed by the ICs organization clearly limits PDLLA molecular dynamics. The confinement effect on the glass transition dynamics was investigated by unconventional dynamic mechanical analysis experiments, which confirmed that ICs segmental mobility is highly restricted when compared with the one of pure PDLLA. Bulk PDLLA presents a typical VFTH behavior while the ICs dynamics shows an Arrhenius trend.


Poly(d,l-lactic acid) Inclusion complexes Glass transition dynamics 



Portuguese Foundation for Science and Technology (FCT) for financial support through the PTDC/FIS/115048/2009 project and to the NMR Portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho). FCT and FEDER (European Fund for Regional Development)-COMPETE-QREN-EU for financial support to the Research Centre, CQ/UM [PEst-C/QUI/UI0686/2011 (FCOMP-01-0124-FEDER-022716)].


  1. 1.
    Jeong S, Kang WY, Song CK, Park JS (2012) Supramolecular cyclodextrin–dye complex exhibiting selective and efficient quenching by lead ions. Dyes Pigments 93:1544–1548CrossRefGoogle Scholar
  2. 2.
    Wang L, Wang JL, Dong CM (2005) Supramolecular inclusion complexes of star-shaped poly(ε-caprolactone) with α-cyclodextrin. J Polym Sci A Polym Chem 43:4721–4730CrossRefGoogle Scholar
  3. 3.
    Ceborska M, Asztemborska M, Lipkowski J (2012) Rare ‘head-to-tail’ arrangement of guest molecules in the inclusion complexes of (+)- and (−)-menthol with β-cyclodextrin. Chem Phys Lett 553:64–67CrossRefGoogle Scholar
  4. 4.
    Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27:6218–6226CrossRefGoogle Scholar
  5. 5.
    Castiglione F, Crupi V, Majolino D, Mele A, Rossi B, Trotta F et al (2012) Inside new materials: an experimental numerical approach for the structural elucidation of nanoporous cross-linked polymers. J Phys Chem B 116:13133–13140CrossRefGoogle Scholar
  6. 6.
    Williamson BR, Krishnaswamy R, Tonelli AE (2011) Physical properties of poly(ε-caprolactone) coalesced from its α-cyclodextrin inclusion compound. Polymer 52:4517–4527CrossRefGoogle Scholar
  7. 7.
    Zhang S, Yu Z, Govender T, Luo H, Li B (2008) A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer 49:3205–3210CrossRefGoogle Scholar
  8. 8.
    Pinheiro A, Mano JF (2009) Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test 28:89–95CrossRefGoogle Scholar
  9. 9.
    Mano JF (2008) Thermal behaviour and glass transition dynamics of inclusion complexes of α-cyclodextrin with poly(d,l-lactic acid). Macromol Rapid Commun 29:1341–1345CrossRefGoogle Scholar
  10. 10.
    Tonelli AE (2012) Superstructures with cyclodextrins: chemistry and applications. Beilstein J Org Chem 8:1318–1332CrossRefGoogle Scholar
  11. 11.
    Richert R (2011) Dynamics of nanoconfined supercooled liquids. Annu Rev Phys Chem 62:65–84CrossRefGoogle Scholar
  12. 12.
    Korotkova T, Karaeva O, Naberezhnov A, Rysiakiewichz-Pasek E, Korotkov L (2012) Dielectric and mechanical relaxations in the vicinity of glass transitions in confined polar copolymers VDF/Te and VDF/Tr. Solid State Commun 152:846–848CrossRefGoogle Scholar
  13. 13.
    Richert R (2011) Dynamics of nanoconfined supercooled liquids. Annu Rev Phys Chem 62:65–84CrossRefGoogle Scholar
  14. 14.
    McKenna GB (2010) Ten (or more) years of dynamics in confinement: perspectives for 2010. Eur Phys J Spec Top 189:285–302CrossRefGoogle Scholar
  15. 15.
    Modestino MA, Paul DK, Dishari S, Petrina SA, Allen FI, Hickner MA et al (2013) Self-assembly and transport limitations in confined Nafion films. Macromolecules 46:867–873CrossRefGoogle Scholar
  16. 16.
    Zuza E, Ugartemendia JM, Lopez A, Meaurio E, Lejardi A, Sarasua JR (2008) Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer 49:4427–4432CrossRefGoogle Scholar
  17. 17.
    Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718CrossRefGoogle Scholar
  18. 18.
    Delpouve N, Lixon C, Saiter A et al (2009) Amorphous phase dynamics at the glass transition in drawn semi-crystalline polyester. J Therm Anal Calorim 97:541–546CrossRefGoogle Scholar
  19. 19.
    Delpouve N, Saiter A, Dargent E (2011) Cooperativity length evolution during crystallization of poly(lactic acid). Eur Polym J 47:2414–2423CrossRefGoogle Scholar
  20. 20.
    Hamonic F, Saiter A, Prevosto D et al (2012) Temperature dependence of structural relaxation time in drawn polymers: which is the role of cooperativity? AIP Conf Proc 1459:211–213CrossRefGoogle Scholar
  21. 21.
    Chen C-C, Chueh J-Y, Tseng H, Huang H-M, Lee S-Y (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173CrossRefGoogle Scholar
  22. 22.
    Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid). Polymer 39:267–273CrossRefGoogle Scholar
  23. 23.
    Matusik J, Stodolak E, Bahranowski K (2011) Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Appl Clay Sci 51:102–109CrossRefGoogle Scholar
  24. 24.
    Meaurio E, Lopez-Rodriguez N, Sarasua J (2006) Infrared spectrum of poly (l-lactide): application to crystallinity studies. Macromolecules 39:9291–9301CrossRefGoogle Scholar
  25. 25.
    Tonelli AE (2012) Restructuring polymers via nanoconfinement and subsequent release. Beilstein J Org Chem 8:1318–1332CrossRefGoogle Scholar
  26. 26.
    Dias JCR. Desenvolvimento de um fio de sutura degradável baseado em PLLA com libertação controlada de fármacos. Master Thesis, Universidade do Minho, Portugal, 2011Google Scholar
  27. 27.
    Correia C, Moreira Teixeira LS, Moroni L, Reis RL, van Blitterswijk C, Karperien M et al (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C 17:717–730CrossRefGoogle Scholar
  28. 28.
    Liu X, Zou Y, Li W, Cao G, Chen W (2006) Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91:3259–3265CrossRefGoogle Scholar
  29. 29.
    Faucci MT, Melani F, Mura P (2000) 1H-NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid. J Pharm Biomed Anal 23:25–31CrossRefGoogle Scholar
  30. 30.
    Anselmi C, Centini M, Maggiore M, Gaggelli N, Andreassi M, Buonocore A et al (2008) Non-covalent inclusion of ferulic acid with α-cyclodextrin improves photo-stability and delivery: NMR and modeling studies. J Pharm Biomed Anal 46:645–652CrossRefGoogle Scholar
  31. 31.
    Huang L, Allen E, Tonelli AE (1998) Study of the inclusion compounds formed between α-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone). Polymer 39:4857–4865CrossRefGoogle Scholar
  32. 32.
    Mori T, Dong T, Yazawa K, Inoue Y (2007) Preparation of highly transparent and thermally stable films of α-cyclodextrin/polymer inclusion complexes. Macromol Rapid Commun 28:2095–2099CrossRefGoogle Scholar
  33. 33.
    Wenz G, Han B-H, Mueller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817CrossRefGoogle Scholar
  34. 34.
    Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718CrossRefGoogle Scholar
  35. 35.
    McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R261–R524CrossRefGoogle Scholar
  36. 36.
    Eastman SA, Kim S, Page KA, Rowe BW, Kang S, Soles CL et al (2012) Effect of confinement on structure, water solubility, and water transport in Nafion thin films. Macromolecules 45:7920–7930CrossRefGoogle Scholar
  37. 37.
    Mano JF, Gómez Ribelles JL, Alves NM, Salmerón Sanchez M (2005) Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer 46:8258–8265CrossRefGoogle Scholar
  38. 38.
    Wool RP, Campanella A (2009) Twinkling fractal theory of the glass transition: rate dependence and time–temperature superposition. J Polym Sci Part B Polym Phys 47:2578–2590CrossRefGoogle Scholar
  39. 39.
    Mano JF (2007) Structural evolution of the amorphous phase during crystallization of poly(l-lactic acid): A synchrotron wide-angle X-ray scattering study. J Non-Cryst Solids 353:2567–2572CrossRefGoogle Scholar
  40. 40.
    Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, Lee WK, Sasaki S, Yui N (2004) Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and α-cyclodextrin. Macromol Biosci 4:92–99CrossRefGoogle Scholar
  41. 41.
    Dionisio M, Viciosa MT, Wang Y, Mano JF (2005) Macromol Rapid Commun 26:1423CrossRefGoogle Scholar
  42. 42.
    Lixon C, Delpouve N, Saiter A et al (2008) Evidence of cooperative rearranging region size anisotropy for drawn PET. Eur Polym J 44:3377–3384CrossRefGoogle Scholar
  43. 43.
    Delpouve N, Saiter A, Mano JF et al (2008) Cooperative rearranging region size in semi-crystalline poly(l-lactic acid). Polymer 49:3130–3135CrossRefGoogle Scholar
  44. 44.
    Narladkar A, Balnois E, Vignaud G, Grohens Y (2008) Difference in glass transition behavior between semi crystalline and amorphous poly(lactic acid) thin films. Macromol Symp 273:146–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tânia Oliveira
    • 1
    • 2
  • Gabriela Botelho
    • 3
  • Natália M. Alves
    • 1
    • 2
    Email author
  • João F. Mano
    • 1
    • 2
  1. 1.3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, Engineering SchoolUniversity of MinhoCaldas das TaipasPortugal
  2. 2.ICVS/3B’s PT Government Associate LaboratoryBragaPortugal
  3. 3.Chemistry CenterUniversity of MinhoBragaPortugal

Personalised recommendations