Colloid and Polymer Science

, Volume 292, Issue 3, pp 599–612 | Cite as

Cross-linked starch nanoparticles stabilized Pickering emulsion polymerization of styrene in w/o/w system

Original Contribution


Here, we present a method to synthesize expandable spherical polystyrene beads containing well-dispersed water microdroplets. The beads, 2–3 mm in diameter, were prepared through surfactant-free Pickering emulsion polymerization in water-in-oil-in-water (w/o/w) system using cross-linked starch nanoparticles (CSTN) as emulsifier. The CSTNs were in situ surface-modified by styrene maleic anhydride copolymer as confirmed by infrared spectroscopy and contact angle analysis. The entrapped water microdroplets with the average size of 3–4 μm were shown to be surrounded by a dense layer of the CSTN. The number droplet density as well as water encapsulation efficiency in the polystyrene beads increased with the CSTN concentration. Furthermore, regardless of CSTN content, all samples exhibited high encapsulation stability of over 68 % after 3 months. These characteristics along with good expansion behavior suggest the synthesized beads as expandable polystyrene containing water as a green blowing agent.


Water expandable polystyrene Inverse Pickering emulsion polymerization Starch nanoparticle w/o/w emulsion Droplet size distribution 


  1. 1.
    Pickering SU (1907) Journal of the Chemical Society, Transactions 91Google Scholar
  2. 2.
    Tambe DE, Sharma MM (1994) Factors controlling the stability of colloid-stabilized emulsions: II. A model for the rheological properties of colloid-laden interfaces. J Colloid Interface Sci 162(1):1–10. doi:10.1006/jcis.1994.1001 CrossRefGoogle Scholar
  3. 3.
    Tambe DE, Sharma MM (1995) Factors controlling the stability of colloid-stabilized emulsions: III. Measurement of the rheological properties of colloid-laden interfaces. J Colloid Interface Sci 171(2):456–462. doi:10.1006/jcis.1995.1202 CrossRefGoogle Scholar
  4. 4.
    Midmore BR (1998) Preparation of a novel silica-stabilized oil/water emulsion. Colloids Surf A Physicochem Eng Asp 132(2–3):257–265. doi:10.1016/S0927-7757(97)00094-0 CrossRefGoogle Scholar
  5. 5.
    Horozov TS, Binks BP (2006) Particle-stabilized emulsions: A bilayer or a bridging monolayer? Angew Chem Int Ed 45(5):773–776. doi:10.1002/anie.200503131 CrossRefGoogle Scholar
  6. 6.
    Marku D, Wahlgren M, Rayner M, Sjöö M, Timgren A (2012) Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm 428(1–2):1–7. doi:10.1016/j.ijpharm.2012.01.031 CrossRefGoogle Scholar
  7. 7.
    Yusoff A, Murray BS (2011) Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocoll 25(1):42–55. doi:10.1016/j.foodhyd.2010.05.004 CrossRefGoogle Scholar
  8. 8.
    Dokić L, Krstonošić V, Nikolić I (2012) Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocoll 29(1):185–192. doi:10.1016/j.foodhyd.2012.02.008 CrossRefGoogle Scholar
  9. 9.
    Rayner M, Sjoo M, Timgren A, Dejmek P (2012) Quinoa starch granules as stabilizing particles for production of Pickering emulsions. Faraday Discuss 158:139–155. doi:10.1039/c2fd20038d CrossRefGoogle Scholar
  10. 10.
    Timgren A, Rayner M, Sjöö M, Dejmek P (2011) Starch particles for food based Pickering emulsions. Procedia Food Sci 1(0):95–103. doi:10.1016/j.profoo.2011.09.016 CrossRefGoogle Scholar
  11. 11.
    Matos M, Timgren A, Sjöö M, Dejmek P, Rayner M (2013) Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids Surf A Physicochem Eng Asp 423(0):147–153. doi:10.1016/j.colsurfa.2013.01.060 CrossRefGoogle Scholar
  12. 12.
    Li C, Sun P, Yang C (2012) Emulsion stabilized by starch nanocrystals. Starch Stärke 64(6):497–502. doi:10.1002/star.201100178 Google Scholar
  13. 13.
    Tan Y, Xu K, Liu C, Li Y, Lu C, Wang P (2012) Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydr Polym 88(4):1358–1363. doi:10.1016/j.carbpol.2012.02.018 CrossRefGoogle Scholar
  14. 14.
    Xu ZZ, Wang CC, Yang WL, Deng YH, Fu SK (2004) Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J Magn Magn Mater 277(1–2):136–143. doi:10.1016/j.jmmm.2003.10.018 CrossRefGoogle Scholar
  15. 15.
    Ge L, Texter J (2004) Combustion resistant nanocomposites from water/AOT/MMA reverse microemulsions. Polym Bull 52(3–4):297–305. doi:10.1007/s00289-004-0288-7 CrossRefGoogle Scholar
  16. 16.
    Negrete-Herrera N, Putaux J-L, David L, Bourgeat-Lami E (2006) Polymer/Laponite composite colloids through emulsion polymerization: Influence of the clay modification level on particle morphology. Macromolecules 39(26):9177–9184. doi:10.1021/ma0610515 CrossRefGoogle Scholar
  17. 17.
    Zhang K, Wu W, Meng H, Guo K, Chen JF (2009) Pickering emulsion polymerization: preparation of polystyrene/nano-SiO2 composite microspheres with core–shell structure. Powder Technol 190(3):393–400. doi:10.1016/j.powtec.2008.08.022 CrossRefGoogle Scholar
  18. 18.
    Voorn DJ, Ming W, van Herk AM (2006) Polymer–clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 39(6):2137–2143. doi:10.1021/ma052539t CrossRefGoogle Scholar
  19. 19.
    Fang FF, Kim JH, Choi HJ, Kim CA (2009) Synthesis and electrorheological response of nanosized Laponite stabilized poly(methyl methacrylate) spheres. Colloid Polym Sci 287(6):745–749CrossRefGoogle Scholar
  20. 20.
    Liu YD, Zhang WL, Choi HJ (2012) Pickering emulsion polymerization of core-shell-structured polyaniline@SiO 2 nanoparticles and their electrorheological response. Colloid Polym Sci 290(9):855–860CrossRefGoogle Scholar
  21. 21.
    Crevecoeur JJ, Nelissen L, Lemstra PJ (1999) Water expandable polystyrene (WEPS): Part 1. Strategy and procedures. Polymer 40(13):3685–3689. doi:10.1016/S0032-3861(98)00617-X CrossRefGoogle Scholar
  22. 22.
    Snijders Emile A, Nelissen L, Lemstra Piet J (2006) Water expandable polystyrene (WEPS): Part 4. Synthesis of the water expandable blend of polystyrene and poly(2,6- dimethyl-1,4-phenylene ether). e-Polymers, vol 6. doi:10.1515/epoly.2006.6.1.994
  23. 23.
    Shen J, Cao X, James Lee L (2006) Synthesis and foaming of water expandable polystyrene–clay nanocomposites. Polymer 47(18):6303–6310. doi:10.1016/j.polymer.2006.06.068 CrossRefGoogle Scholar
  24. 24.
    Crevecoeur JJ, Nelissen L, Lemstra PJ (1999) Water expandable polystyrene (WEPS): Part 2. In situ synthesis of (block) copolymer surfactants. Polymer 40(13):3691–3696. doi:10.1016/S0032-3861(98)00619-3 CrossRefGoogle Scholar
  25. 25.
    Pallay J, Kelemen P, Berghmans H, Van Dommelen D (2000) Expansion of polystyrene using water as the blowing agent. Macromol Mater Eng 275(1):18–25. doi:10.1002/(sici)1439-2054(20000201)275:1<18::aid-mame18>;2-3 CrossRefGoogle Scholar
  26. 26.
    Amiri R-SN, Qazvini NT, Sanjani NS (2009) Water expandable polystyrene-organoclay nanocomposites: Role of clay and its dispersion state. J Macromol Sci B 48(5):955–966. doi:10.1080/00222340903032474 CrossRefGoogle Scholar
  27. 27.
    Garti N (1997) Progress in stabilization and transport phenomena of double emulsions in food applications. LWT Food Sci Technol 30(3):222–235. doi:10.1006/fstl.1996.0176 CrossRefGoogle Scholar
  28. 28.
    Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9(11):3314–3320. doi:10.1021/bm800987c CrossRefGoogle Scholar
  29. 29.
    Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) The preparation and characterisation of a series of chemically modified potato starches. Carbohydr Polym 47(3):245–252. doi:10.1016/S0144-8617(01)00187-4 CrossRefGoogle Scholar
  30. 30.
    Putaux J-L, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4(5):1198–1202. doi:10.1021/bm0340422 CrossRefGoogle Scholar
  31. 31.
    Huang M-F, Yu J-G, Ma X-F (2004) Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer 45(20):7017–7023. doi:10.1016/j.polymer.2004.07.068 CrossRefGoogle Scholar
  32. 32.
    van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15(6):208–213. doi:10.1016/S0167-7799(97)01021-4 CrossRefGoogle Scholar
  33. 33.
    Ma X, Yu J, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68(1):268–273. doi:10.1016/j.compscitech.2007.03.016 CrossRefGoogle Scholar
  34. 34.
    Zobel HF, Young SN, Rocca LA (1988) Starch gelatinization: An X-ray diffraction study. Cereal Chem 65(6):4Google Scholar
  35. 35.
    Xie X, Liu Q, Cui SW (2006) Studies on the granular structure of resistant starches (type 4) from normal, high amylose, and waxy cornstarch citrates. Food Res Int 39(3):332–341. doi:10.1016/j.foodres.2005.08.004 CrossRefGoogle Scholar
  36. 36.
    Pallay J, Berghmans H (2002) Water-blown expandable polystyrene. Improvement of the compatibility of the water carrier with the polystyrene matrix by In Situ grafting Part I. Mechanism of free radical grafting. Cell Polym 21(1):1–18Google Scholar
  37. 37.
    Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilized solely by colloidal particles. Adv Colloid Interf Sci 100–102(SUPPL):503–546CrossRefGoogle Scholar
  38. 38.
    Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28(6):837–844CrossRefGoogle Scholar
  39. 39.
    Vaidya UR, Bhattacharya M (1994) Properties of blends of starch and synthetic polymers containing anhydride groups. J Appl Polym Sci 52(5):617–628. doi:10.1002/app.1994.070520505 CrossRefGoogle Scholar
  40. 40.
    Chauhan GS, Guleria LK, Misra BN, Kaur I (1999) Polymers from renewable resources. II. A study in the radio chemical grafting of poly(styrene-alt-maleic anhydride) onto cellulose extracted from pine needles. J Polym Sci A Polym Chem 37(12):1763–1769. doi:10.1002/(sici)1099-0518(19990615)37:12<1763::aid-pola5>;2-s CrossRefGoogle Scholar
  41. 41.
    Bastos DC, Santos AEF, da Silva MLVJ, Simão RA (2009) Hydrophobic cornstarch thermoplastic films produced by plasma treatment. Ultramicroscopy 109(8):1089–1093. doi:10.1016/j.ultramic.2009.03.031 CrossRefGoogle Scholar
  42. 42.
    Midmore BR (1999) Effect of aqueous phase composition on the properties of a silica-stabilized w/o emulsion. J Colloid Interface Sci 213(2):352–359. doi:10.1006/jcis.1999.6108 CrossRefGoogle Scholar
  43. 43.
    Binks BP, Lumsdon SO (2000) Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 16(6):2539–2547. doi:10.1021/la991081j CrossRefGoogle Scholar
  44. 44.
    Binks BP, Whitby CP (2004) Silica particle-stabilized emulsions of silicone oil and water: aspects of emulsification. Langmuir 20(4):1130–1137. doi:10.1021/la0303557 CrossRefGoogle Scholar
  45. 45.
    Binks BP, Philip J, Rodrigues JA (2005) Inversion of silica-stabilized emulsions induced by particle concentration. Langmuir 21(8):3296–3302. doi:10.1021/la046915z CrossRefGoogle Scholar
  46. 46.
    Abismaı̈l B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6(1–2):75–83. doi:10.1016/S1350-4177(98)00027-3 CrossRefGoogle Scholar
  47. 47.
    Behrend O, Ax K, Schubert H (2000) Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem 7(2):77–85. doi:10.1016/S1350-4177(99)00029-2 CrossRefGoogle Scholar
  48. 48.
    Das AK, Mukesh D, Swayambunathan V, Kotkar DD, Ghosh PK (1992) Concentrated emulsions. 3. Studies on the influence of continuous-phase viscosity, volume fraction, droplet size, and temperature on emulsion viscosity. Langmuir 8(10):2427–2436CrossRefGoogle Scholar
  49. 49.
    Huang X, Kakuda Y, Cui W (2001) Hydrocolloids in emulsions: particle size distribution and interfacial activity. Food Hydrocoll 15(4–6):533–542. doi:10.1016/S0268-005X(01)00091-1 CrossRefGoogle Scholar
  50. 50.
    Yan N, Masliyah JH (1995) Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 1. Partitioning of clay particles and preparation of emulsions. Colloids Surf A Physicochem Eng Asp 96(3):229–242. doi:10.1016/0927-7757(94)03058-8 CrossRefGoogle Scholar
  51. 51.
    Binks BP, Clint JH, Dyab AKF, Fletcher PDI, Kirkland M, Whitby CP (2003) Ellipsometric study of monodisperse silica particles at an oil–water interface. Langmuir 19(21):8888–8893. doi:10.1021/la035058g CrossRefGoogle Scholar
  52. 52.
    Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16(21):7920–7930. doi:10.1021/la991548q CrossRefGoogle Scholar
  53. 53.
    Raghavan SR, Khan SA (1995) Shear-induced microstructural changes in flocculated suspensions of fumed silica. J Rheol 39(6):1311–1325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Polymer Division, School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Public HealthHarvard UniversityBostonUSA

Personalised recommendations