Colloid and Polymer Science

, Volume 292, Issue 2, pp 325–331 | Cite as

Microrheology of polysaccharide nanogel-integrated system

  • Yurina Sekine
  • Kimiko Okazaki
  • Tomoko Ikeda-Fukazawa
  • Masatoshi Ichikawa
  • Kenichi Yoshikawa
  • Sada-atsu Mukai
  • Kazunari Akiyoshi
Original Contribution

Abstract

The viscoelastic behavior of a cholesterol-modified pullulan (CHP) nanogel at various concentrations was measured using passive particle-tracking microrheology. Microrheology measures stress–strain relationships in small volumes of material by monitoring the response of probes embedded in the medium. Although microrheology is a useful way to overcome sample volume limitations, the application of the method to CHP nanogel systems has not been reported. The viscoelastic spectra of the CHP nanogels obtained from the microrheological measurements were in good agreement with the bulk rheological measurements for each sample, demonstrating that microrheological measurement is effective in CHP nanogel systems. The gelation behavior of CHP nanogel dispersions containing pullulans of different molecular weights was also investigated by microrheology. CHP nanogels made from 1.0 or 4.0 × 105 molecular weight pullulans formed a macrogel at around 3.0 wt%, whereas the CHP nanogel consisting of 0.55 × 105 molecular weight pullulan did not form a macrogel. This suggests that the mechanical properties of the system can be controlled by the molecular weight of the pullulan used. These insights into gelation behavior should be useful in predicting the most favorable conditions for developing novel materials.

Keywords

Hydrogel Nanogel Microrheology Polymer Polysaccharide 

REFERENCES

  1. 1.
    Akiyosh K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Macromolecules 26:3062CrossRefGoogle Scholar
  2. 2.
    Sasaki Y, Akiyoshi K (2010) Chem Rec 10:366Google Scholar
  3. 3.
    Akiyoshi K, Deguchi S, Tajima H, Nishikawa T, Sunamoto J (1997) Macromolecules 30:857CrossRefGoogle Scholar
  4. 4.
    Hasegawa U, Nomura SM, Kaul SC, Hirano T, Akiyoshi K (2005) Biochem Biophys Res Commun 331:917CrossRefGoogle Scholar
  5. 5.
    Toita S, Hasegawa U, Koga H, Sekiya I, Muneta T, Akiyoshi K (2008) J Nanosci Nanotechnol 8:2279CrossRefGoogle Scholar
  6. 6.
    Nishikawa T, Akiyoshi K, Sunamoto J (1996) J Am Chem Soc 118:6110CrossRefGoogle Scholar
  7. 7.
    Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J (1998) J Controlled Release 54:313CrossRefGoogle Scholar
  8. 8.
    Tsuji K, Hamada T, Uenaka A, Wada H, Sato E, Isobe M, Asagoe K, Yamasaki O, Shiku H, Ritter G, Murphy R, Hoffman EW, Old LJ, Nakayama E, Iwatsuki K (2008) Cancer Immunol Immunother 57:1429CrossRefGoogle Scholar
  9. 9.
    Noichi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong II, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nat Mater 9:572CrossRefGoogle Scholar
  10. 10.
    Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K (2002) Langmuir 18:3780CrossRefGoogle Scholar
  11. 11.
    Sekine Y, Moritani Y, Ikeda-Fukazawa T, Sasaki Y, Akiyoshi K (2012) Adv Healthcare Mater 1:722CrossRefGoogle Scholar
  12. 12.
    Kato N, Hasegawa U, Morimoto N, Saita Y, Nakashima K, Ezura Y, Kurosawa H, Akiyoshi K, Noda M (2007) J Cell Biochem 101:1063CrossRefGoogle Scholar
  13. 13.
    Hayashi C, Hasegawa U, Saita Y, Hemmi H, Hayata T, Nakashima K, Ezura Y, Amagasa T, Akiyoshi K, Noda M (2009) J Cell Phys 220:1CrossRefGoogle Scholar
  14. 14.
    Pruitt LA, Chakravautula AM (2011) Mechanics of biomaterials: fundamental principles for implant design. Cambridge University Press, UKCrossRefGoogle Scholar
  15. 15.
    Langer R, Tirrell DA (2004) Nature 428:487CrossRefGoogle Scholar
  16. 16.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Adv Mater 21:3307CrossRefGoogle Scholar
  17. 17.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Cell 126:677CrossRefGoogle Scholar
  18. 18.
    Waigh TA (2005) Rep Prog Phys 68:685CrossRefGoogle Scholar
  19. 19.
    Squires TM, Mason TG (2010) Annu Rev Fluid Mech 42:413CrossRefGoogle Scholar
  20. 20.
    Kimura Y (2009) J Phys Soc Jpn 78:041005CrossRefGoogle Scholar
  21. 21.
    Dasgupta BR, Weitz DA (2005) Phys Rev 71:021504CrossRefGoogle Scholar
  22. 22.
    Harden JL, Viasnoff V (2001) Curr Opin Colloid Interface Sci 6:438CrossRefGoogle Scholar
  23. 23.
    Narita T, Knaeabel A, Munch JP, Candau SJ (2001) Macromolecules 34:8224CrossRefGoogle Scholar
  24. 24.
    Wong IY, Gardel ML, Reichman DR, Weeks ER, Valentine MT, Bausch AR, Weitz DA (2004) Phys Rev Lett 92:178101CrossRefGoogle Scholar
  25. 25.
    Squires TM, Brady JF (2005) Phys Fluids 17:073101CrossRefGoogle Scholar
  26. 26.
    Mason TG, Genesan L, Zanten JH, Wirtz D, Kuo SC (1997) Phys Rev Lett 79:3282CrossRefGoogle Scholar
  27. 27.
    Mason TG (2000) Rheol Acta 39:371CrossRefGoogle Scholar
  28. 28.
    Mason TG, Weitz DA (1995) Phys Rev Lett 74:1250CrossRefGoogle Scholar
  29. 29.
    Faxen H (1922) Ann Phys 373:89CrossRefGoogle Scholar
  30. 30.
    Ueberschär O, Krüger M, Gutsche C, Stangner T, Wagner C, Kühne K, Kremer F (2012) Polymer 53:5760CrossRefGoogle Scholar
  31. 31.
    Rasband W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2012.
  32. 32.
    Xu J, Palmer A, Wirtz D (1998) Macromolecules 31:6468Google Scholar
  33. 33.
    Palmer A, Xu J, Wirtz D (1998) Rheol Acta 37:97CrossRefGoogle Scholar
  34. 34.
    Palmer A, Mason TG, Xu J, Kuo SC, Wirtz D (1999) Biophys J 76:1063CrossRefGoogle Scholar
  35. 35.
    Yamada S, Wirtz D, Kuo SC (2000) Biophys J 78:1736CrossRefGoogle Scholar
  36. 36.
    Podalinskii AV (1974) Polymer Science USSR 16:2758CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yurina Sekine
    • 1
  • Kimiko Okazaki
    • 1
  • Tomoko Ikeda-Fukazawa
    • 2
  • Masatoshi Ichikawa
    • 3
  • Kenichi Yoshikawa
    • 3
  • Sada-atsu Mukai
    • 4
    • 5
  • Kazunari Akiyoshi
    • 4
    • 5
  1. 1.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityTokyoJapan
  2. 2.Department of Applied ChemistryMeiji UniversityKawasakiJapan
  3. 3.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan
  4. 4.Exploratory Research for Advanced Technology (ERATO) Program, Bionanotransporter projectKyotoJapan
  5. 5.Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations