Advertisement

Colloid and Polymer Science

, Volume 291, Issue 9, pp 2031–2047 | Cite as

A review on tough and sticky hydrogels

  • Charles W. Peak
  • Jonathan J. Wilker
  • Gudrun SchmidtEmail author
Invited Review

Abstract

In this review, we survey recent literature (2009–2013) on hydrogels that are mechanically tough and adhesive. The impact of published work and trends in the field are examined. We focus on design concepts, new materials, structures related to mechanical performance and adhesion properties. Besides hydrogels made of individual polymers, concepts developed to toughen hydrogels include interpenetrating and double networks, slide ring polymer gels, topological hydrogels, ionically cross-linked copolymer gels, nanocomposite polymer hydrogels, self-assembled microcomposite hydrogels, and combinations thereof. Hydrogels that are adhesive in addition to tough are also discussed. Adhesive properties, especially wet adhesion of hydrogels, are rare but needed for a variety of general technologies. Some of the most promising industrial applications are found in the areas of sensor and actuator technology, microfluidics, drug delivery and biomedical devices. The most recent accomplishments and creative approaches to making tough and sticky hydrogels are highlighted. This review concludes with perspectives for future directions, challenges and opportunities in a continuously changing world.

Keywords

Tough Hydrogel Adhesion Polymer Cross-linking Mechanical strength 

Notes

Acknowledgments

This work was supported by the Weldon School of Biomedical Engineering at Purdue University (GS), by the National Science Foundation (JJW) and by the Office of Naval Research (JJW). We thank the reviewers for useful suggestions and comments.

References

  1. 1.
    Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736CrossRefGoogle Scholar
  2. 2.
    Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025CrossRefGoogle Scholar
  3. 3.
    Messing R, Schmidt AM (2011) Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2:18–32CrossRefGoogle Scholar
  4. 4.
    Calvert P (2009) Hydrogels for soft machines. Adv Mater 21:743–756CrossRefGoogle Scholar
  5. 5.
    D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, Apr 6 2000.Google Scholar
  6. 6.
    Dong XL, Wu RA, Dong J, Wu MH, Zhu Y, Zou HF (2009) Recent progress of polar stationary phases in CEC and capillary liquid chromatography. Electrophoresis 30:141–154CrossRefGoogle Scholar
  7. 7.
    Hempenius MA, Cirmi C, Lo Savio F, Song J, Vancso GJ (2010) Poly(ferrocenylsilane) gels and hydrogels with redox-controlled actuation. Macromol Rapid Commun 31:772–783CrossRefGoogle Scholar
  8. 8.
    G. Y. Huang, L. H. Zhou, Q. C. Zhang, Y. M. Chen, W. Sun, F. Xu, and T. J. Lu, Microfluidic hydrogels for tissue engineering, Biofabrication, vol. 3, Mar 2011.Google Scholar
  9. 9.
    Allazetta S, Cosson S, Lutolf MP (2011) Programmable microfluidic patterning of protein gradients on hydrogels. Chem Commun 47:191–193CrossRefGoogle Scholar
  10. 10.
    Schneider HJ, Kato K, Strongin RM (2007) Chemomechanical polymers as sensors and actuators for biological and medicinal applications. Sensors 7:1578–1611CrossRefGoogle Scholar
  11. 11.
    Texter J (2009) Templating hydrogels. Colloid Polym Sci 287:313–321CrossRefGoogle Scholar
  12. 12.
    Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891CrossRefGoogle Scholar
  13. 13.
    Kim P, Zarzar LD, He XM, Grinthal A, Aizenberg J (2011) Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr Opin Solid State Mater Sci 15:236–245CrossRefGoogle Scholar
  14. 14.
    Artzi N, Zeiger A, Boehning F, Ramos AB, van Vliet K, Edelman ER (2011) Tuning adhesion failure strength for tissue-specific applications. Acta Biomaterialia 7:67–74CrossRefGoogle Scholar
  15. 15.
    Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH (2012) Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci 37:1031–1050CrossRefGoogle Scholar
  16. 16.
    A. Matsumoto, R. Yoshida, and K. Kataoka, Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH, Biomacromolecules, vol. 5, pp. 1038–1045, May–Jun 2004.Google Scholar
  17. 17.
    Thomas PC, Cipriano BH, Raghavan SR (2011) Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter 7:8192–8197CrossRefGoogle Scholar
  18. 18.
    Myung D, Farooqui N, Zheng LL, Koh W, Gupta S, Bakri A, Noolandi J, Cochran JR, Frank CW, Ta CN (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res Part A 90A:70–81CrossRefGoogle Scholar
  19. 19.
    Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636CrossRefGoogle Scholar
  20. 20.
    Petrie EM (2007) Theories of adhesion. In: Patrie EM (ed) Handbook of adhesives and sealants. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker Inc., New YorkGoogle Scholar
  22. 22.
    Pocius AV (2002) Adhesion and adhesive technology. An introduction. Carl Hanser Verlag, MunichGoogle Scholar
  23. 23.
    Fitton MD, Broughton IG (2005) Variable modulus adhesives: an approach to optimised joint performance. Int J Adhes Adhes 25:329–336CrossRefGoogle Scholar
  24. 24.
    Davies ML, Murphy SM, Hamilton CJ, Tighe BJ (1992) Polymer membranes in clinical sensor applications: 3. Hydrogels as reactive matrix membranes in fiber optic sensors. Biomaterials 13:991–999CrossRefGoogle Scholar
  25. 25.
    Petersen S, Gattermayer M, Biesalski M (2011) Hold on at the right spot: bioactive surfaces for the design of live-cell micropatterns. Bioactive Surfaces 240:35–78CrossRefGoogle Scholar
  26. 26.
    Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643CrossRefGoogle Scholar
  27. 27.
    Park K, Shalaby SWS, Park H (1993) Biodegradable Hydrogels for Drug Delivery. Technomic Publishing, Lancaster, PAGoogle Scholar
  28. 28.
    S. Chaterji, I. K. Kwon, and K. Park, Smart polymeric gels: redefining the limits of biomedical devices, Progress in Polymer Science, vol. 32, pp. 1083–1122, Aug–Sep 2007.Google Scholar
  29. 29.
    Bird SP, Baker LA (2011) Biologically modified hydrogels for chemical and biochemical analysis. Analyst 136:3410–3418CrossRefGoogle Scholar
  30. 30.
    Bait N, Grassl B, Derail C, Benaboura A (2011) Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7:2025–2032CrossRefGoogle Scholar
  31. 31.
    Peng HT, Shek PN (2010) Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 7:639–659CrossRefGoogle Scholar
  32. 32.
    Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER (2010) Augmentation of postswelling surgical sealant potential of adhesive hydrogels. J Biomed Mater Res Part A 95A:1159–1169CrossRefGoogle Scholar
  33. 33.
    Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334CrossRefGoogle Scholar
  34. 34.
    Dolgin E (2013) The sticking point. Nat Med 19:124–125CrossRefGoogle Scholar
  35. 35.
    Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822CrossRefGoogle Scholar
  36. 36.
    Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRefGoogle Scholar
  37. 37.
    Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384CrossRefGoogle Scholar
  38. 38.
    Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201CrossRefGoogle Scholar
  39. 39.
    K. Haraguchi and T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Advanced Materials, vol. 14, pp. 1120–1124, AUG 16 2002.Google Scholar
  40. 40.
    Schexnailder PJ, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRefGoogle Scholar
  41. 41.
    Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038CrossRefGoogle Scholar
  42. 42.
    Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G (2009) Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Phys Chem Chem Phys 11:2760–2766CrossRefGoogle Scholar
  43. 43.
    Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657CrossRefGoogle Scholar
  44. 44.
    Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part a-Polym Chem 47:5929–5946CrossRefGoogle Scholar
  45. 45.
    Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428CrossRefGoogle Scholar
  46. 46.
    Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719CrossRefGoogle Scholar
  47. 47.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRefGoogle Scholar
  48. 48.
    Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22CrossRefGoogle Scholar
  49. 49.
    J. Patterson, M. M. Martino, and J. A. Hubbell, Biomimetic materials in tissue engineering, Materials Today, vol. 13, pp. 14–22, Jan–Feb 2010.Google Scholar
  50. 50.
    Stevens MM, Khademhosseini A (2010) Emerging materials for tissue engineering and regenerative medicine: themed issue for Soft Matter and Journal of Materials Chemistry. Soft Matter 6:4962–4962CrossRefGoogle Scholar
  51. 51.
    Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, Anseth KS (2012) Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol 4:1540–1549CrossRefGoogle Scholar
  52. 52.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRefGoogle Scholar
  53. 53.
    Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590CrossRefGoogle Scholar
  54. 54.
    Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818CrossRefGoogle Scholar
  55. 55.
    Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927CrossRefGoogle Scholar
  56. 56.
    Y. Tanaka, A local damage model for anomalous high toughness of double-network gels, Epl, vol. 78, 2007.Google Scholar
  57. 57.
    L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates: I. Use of a strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol. 9, pp. 2993–, 1965.Google Scholar
  58. 58.
    Ito K (2012) Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym J 44:38–41CrossRefGoogle Scholar
  59. 59.
    Tirumala VR, Tominaga T, Lee S, Butler PD, Lin EK, Gong JP, Wu WL (2008) Molecular model for toughening in double-network hydrogels. J Phys Chem B 112:8024–8031CrossRefGoogle Scholar
  60. 60.
    Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5:552–555CrossRefGoogle Scholar
  61. 61.
    Okumura K (2004) Toughness of double elastic networks. Europhys Lett 67:470–476CrossRefGoogle Scholar
  62. 62.
    Kishi R, Hiroki K, Tominaga T, Sano KI, Okuzaki H, Martinez JG, Otero TF, Osada Y (2012) Electro-conductive double-network hydrogels. J Polymer Sci, Part B: Polymer Phys 50:790–796CrossRefGoogle Scholar
  63. 63.
    Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588CrossRefGoogle Scholar
  64. 64.
    Cui J, Lackey MA, Tew GN, Crosby AJ (2012) Mechanical properties of end-linked PEG/PDMS hydrogels. Macromolecules 45:6104–6110CrossRefGoogle Scholar
  65. 65.
    Zhang XY, Guo XL, Yang SG, Tan SX, Li XF, Dai HJ, Yu XL, Zhang XL, Weng N, Jian B, Xu J (2009) Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J Appl Polym Sci 112:3063–3070CrossRefGoogle Scholar
  66. 66.
    Harrass K, Kruger R, Moller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter 9:2869–2877CrossRefGoogle Scholar
  67. 67.
    Rakovsky A, Marbach D, Lotan N, Lanir Y (2009) Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci 112:390–401CrossRefGoogle Scholar
  68. 68.
    Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653CrossRefGoogle Scholar
  69. 69.
    Liu YX, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207CrossRefGoogle Scholar
  70. 70.
    DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH (2010) Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C-Methods 16:1533–1542CrossRefGoogle Scholar
  71. 71.
    Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G (2012) Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol Biosci 12:1490–1501CrossRefGoogle Scholar
  72. 72.
    Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7:211–219CrossRefGoogle Scholar
  73. 73.
    Shull KR (2012) Materials science: a hard concept in soft matter. Nature 489:36–37CrossRefGoogle Scholar
  74. 74.
    Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRefGoogle Scholar
  75. 75.
    Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRefGoogle Scholar
  76. 76.
    P. Manandhar, P. D. Calvert, and J. R. Buck, Elastomeric ionic hydrogel sensor for large strains, IEEE Sensors Journal, vol. 12, Jun 2012.Google Scholar
  77. 77.
    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343CrossRefGoogle Scholar
  78. 78.
    Lin HR, Ling MH, Lin YJ (2009) High strength and low friction of a PAA–alginate–silica hydrogel as potential material for artificial soft tissues. J Biomater Sci Polym Ed 20:637–652CrossRefGoogle Scholar
  79. 79.
    D. W. Thompson and J. T. Butterworth, The nature of laponite and its aqueous dispersions, Journal of Colloid and Interface Science, vol. 151, pp. 236–243, JUN 1992.Google Scholar
  80. 80.
    H. Tanaka, S. Jabbari-Farouji, J. Meunier, and D. Bonn, Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation, Physical Review E, vol. 71, Feb 2005.Google Scholar
  81. 81.
    H. Tanaka, J. Meunier, and D. Bonn, Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels, Physical Review E, vol. 69, Mar 2004.Google Scholar
  82. 82.
    Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241CrossRefGoogle Scholar
  83. 83.
    T. Nishida, H. Endo, N. Osaka, H. Li, K. Haraguchi, and M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering, Physical Review E, vol. 80, Sep 2009.Google Scholar
  84. 84.
    Ren HY, Zhu MF, Haraguchi K (2012) Effects of counter ions of clay platelets on the swelling behavior of nanocomposite gels. J Colloid Interface Sci 375:134–141CrossRefGoogle Scholar
  85. 85.
    H. Furukawa, K. Horie, R. Nozaki, and M. Okada, Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering, Physical Review E, vol. 68, Sep 2003.Google Scholar
  86. 86.
    Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked Networks. Macromolecules 44:8215–8224CrossRefGoogle Scholar
  87. 87.
    Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148CrossRefGoogle Scholar
  88. 88.
    Wu C-J, Wilker JJ, Schmidt G (2013) Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use. Macromol Biosci 13:59–66CrossRefGoogle Scholar
  89. 89.
    Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly Extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRefGoogle Scholar
  90. 90.
    Lin WC, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7:6578–6582CrossRefGoogle Scholar
  91. 91.
    G. J. Lake and A. G. Thomas, Strength of highly elastic materials, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 300, pp. 108–, 1967.Google Scholar
  92. 92.
    Wang Q, Hou RX, Cheng YJ, Fu J (2012) Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8:6048–6056CrossRefGoogle Scholar
  93. 93.
    Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202CrossRefGoogle Scholar
  94. 94.
    Qin XP, Zhao F, Liu YK, Wang HY, Feng SY (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625CrossRefGoogle Scholar
  95. 95.
    T. Huang, H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang, A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel, Advanced Materials, vol. 19, pp. 1622–, Jun 18 2007.Google Scholar
  96. 96.
    Xia LW, Ju XJ, Liu JJ, Xie R, Chu LY (2010) Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. J Colloid Interface Sci 349:106–113CrossRefGoogle Scholar
  97. 97.
    Xu K, Tan Y, Chen Q, An HY, Li WB, Dong LS, Wang PX (2010) A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. J Colloid Interface Sci 345:360–368CrossRefGoogle Scholar
  98. 98.
    Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228CrossRefGoogle Scholar
  99. 99.
    Meid J, Dierkes F, Cui J, Messing R, Crosby AJ, Schmidt A, Richtering W (2012) Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels-from soft to hard fillers. Soft Matter 8:4254–4263CrossRefGoogle Scholar
  100. 100.
    Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047CrossRefGoogle Scholar
  101. 101.
    Lehmann S, Seiffert S, Richtering W (2012) Spatially resolved tracer diffusion in complex responsive hydrogels. J Am Chem Soc 134:15963–15969CrossRefGoogle Scholar
  102. 102.
    Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023CrossRefGoogle Scholar
  103. 103.
    Kato K, Komatsu H, Ito K (2010) A versatile synthesis of diverse polyrotaxanes with a dual role of cyclodextrin as both the cyclic and capping components. Macromolecules 43:8799–8804CrossRefGoogle Scholar
  104. 104.
    Kato K, Inoue K, Kidowaki M, Ito K (2009) Organic–inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane) and gamma-cyclodextrin and subsequent topological cross-linking. Macromolecules 42:7129–7136CrossRefGoogle Scholar
  105. 105.
    Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) Structure Characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42:1344–1351CrossRefGoogle Scholar
  106. 106.
    Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of topological defects in tetra-PEG gels. Macromolecules 43:488–493CrossRefGoogle Scholar
  107. 107.
    Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS Studies on tetra-arm PEG Gels in as-prepared and swollen states. Macromolecules 42:6245–6252CrossRefGoogle Scholar
  108. 108.
    Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455CrossRefGoogle Scholar
  109. 109.
    Friedrich T, Tieke B, Stadler FJ, Bailly C (2011) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7:6590–6597CrossRefGoogle Scholar
  110. 110.
    Thomas JD, Fussell G, Sarkar S, Lowman AM, Marcolongo M (2010) Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomater 6:1319–1328CrossRefGoogle Scholar
  111. 111.
    Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B-Appl Biomater 100B:618–623CrossRefGoogle Scholar
  112. 112.
    Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190CrossRefGoogle Scholar
  113. 113.
    Oelker AM, Berlin JA, Wathier M, Grinstaff MW (2011) Synthesis and characterization of dendron cross-linked PEG Hydrogels as corneal adhesives. Biomacromolecules 12:1658–1665CrossRefGoogle Scholar
  114. 114.
    M. Wathier and M. W. Grinstaff, Hydrogel sealants for wound repair in ophthalmic surgery, Biomaterials and Regenerative Medicine in Ophthalmology, pp. 411–432, 2009.Google Scholar
  115. 115.
    Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701CrossRefGoogle Scholar
  116. 116.
    Wilker JJ (2010) Marine bioinorganic materials: mussels pumping iron. Curr Opin Chem Biol 14:276–283CrossRefGoogle Scholar
  117. 117.
    Wilker JJ (2010) The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed 49:8076–8078CrossRefGoogle Scholar
  118. 118.
    Wilker JJ (2011) Biomaterials: Redox and adhesion on the rocks. Nat Chem Biol 7:579–580CrossRefGoogle Scholar
  119. 119.
    Mehdizadeh M, Weng H, Gyawali D, Tang LP, Yang J (2012) Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983CrossRefGoogle Scholar
  120. 120.
    Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427CrossRefGoogle Scholar
  121. 121.
    Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660CrossRefGoogle Scholar
  122. 122.
    Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205CrossRefGoogle Scholar
  123. 123.
    D. J. Barrett, G. G. Bushnell, and P. B. Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesive, Advanced Healthcare Materials, vol. DOI:  10.1001/adhm.201200316, 2012.
  124. 124.
    Kaur S, Weerasekare GM, Stewart RJ (2011) Multiphase Adhesive coacervates inspired by the sandcastle worm. ACS Appl Mater Interfaces 3:941–944CrossRefGoogle Scholar
  125. 125.
    H. Shao and R. J. Stewart, Biomimetic underwater adhesives with environmentally triggered setting mechanisms, Advanced Materials, vol. 22, pp. 729–+, Feb 9 2010.Google Scholar
  126. 126.
    Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P-californica. Macromol Biosci 9:464–471CrossRefGoogle Scholar
  127. 127.
    Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797CrossRefGoogle Scholar
  128. 128.
    Simson J, Crist J, Strehin I, Lu QZ, Elisseeff JH (2013) An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. J Orthop Res 31:392–400CrossRefGoogle Scholar
  129. 129.
    Amoozgar Z, Rickett T, Park J, Tuchek C, Shi RY, Yeo Y (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8:1849–1858CrossRefGoogle Scholar
  130. 130.
    Arunbabu D, Shahsavan H, Zhang W, Zhao BX (2013) Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium. J Phys Chem B 117:441–449CrossRefGoogle Scholar
  131. 131.
    Iyer BVS, Salib IG, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013) Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9:109–121CrossRefGoogle Scholar
  132. 132.
    Calvo-Marzal P, Delaney MP, Auletta, JT, Pan T, Perri NM, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2012) Manipulating mechanical properties with electricity: Electroplastic elastomer hydrogels. ACS Macro Letters 1:204–208Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Charles W. Peak
    • 1
  • Jonathan J. Wilker
    • 2
  • Gudrun Schmidt
    • 1
    Email author
  1. 1.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations