Advertisement

Colloid and Polymer Science

, Volume 291, Issue 11, pp 2631–2637 | Cite as

Synthesis and properties of multifunctional poly(amic acid) with oligoaniline and fluorene groups

  • Danming Chao
  • Shutao Wang
  • Rui Yang
  • Erik B. Berda
  • Ce Wang
Original Contribution

Abstract

A novel multifunctional poly(amic acid) bearing oligoaniline, fluorene groups (PAAOF) has been prepared through the one-step synthetic route. The structure of PAAOF was confirmed via nuclear magnetic resonance (NMR), Fourier-transform infrared spectra (FTIR), and gel permeation chromatography (GPC). Moreover, the electrochemical measurement results revealed that PAAOF material have an expected electrochemical activity, and good electrochromic properties with high contrast value and satisfactory coloration efficiency. The photophysical properties of the as-synthesized PAAOF at various oxidation states were studied. The results indicated that the fluorescence of PAAOF could be tuned by modulating the oxidation states of oligoaniline segments. In the fluorescence tuning, the fluorene groups are fluorophore, and the oligoaniline segments are used as regulatory unit.

Figure

A novel multifunctional poly(amic acid) containing oligoaniline and fluorene groups was synthesized. This material shows reversible electroactivity and excellent electrochromic properties. Interesting photophysical properties of the as-synthesized PAAOF at various oxidation states were found and studied in detail

Keywords

Multifunctional Electrochromic Oligoaniline Electrochemical 

Notes

Acknowledgments

This work has been supported in part by the National Natural Science Foundation of China (No. 21104024 and 21274052), and the National 973 Project (No. S2009061009). Erik B. Berda would like to thank the NSF for support through grant NSF EEC 0832785.

References

  1. 1.
    Heeger AJ (1993) Synth Met 55:3471CrossRefGoogle Scholar
  2. 2.
    MacDiarmid AG, Epstein AJ (1989) Faraday Discuss Chem Soc 88:317CrossRefGoogle Scholar
  3. 3.
    Kaynak A, Unsoworth J, Clout R, Mohan A, Bears G (1994) J Appl Polym Sci 54:269CrossRefGoogle Scholar
  4. 4.
    Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Science 252:1412CrossRefGoogle Scholar
  5. 5.
    Bai H, Zhao L, Lu CH, Li C, Shi GQ (2009) Polymer 50:3292CrossRefGoogle Scholar
  6. 6.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Prog Polym Sci 34:783CrossRefGoogle Scholar
  7. 7.
    Zhang LJ, Zhang ZM, Kilmartin PA, Travas-Sejdic J (2011) Macromol Chem Phys 212:2674CrossRefGoogle Scholar
  8. 8.
    Molina J, Esteves MF, Fernandez J, Bonastre J, Cases F (2011) Europ Polym J 47:2003CrossRefGoogle Scholar
  9. 9.
    Chao D, Chen J, Lu X, Chen L, Zhang W, Wei Y (2005) Synth Met 150:47CrossRefGoogle Scholar
  10. 10.
    Yu Y, Mao H, Chen L, Lu X, Zhang W, Wei Y (2004) Macromol Rapid Commun 25:664CrossRefGoogle Scholar
  11. 11.
    Huang TC, Lin ST, Yeh LC, Chen CA, Huang HY, Nian ZY, Chen HH, Yeh JM (2012) Polymer 53:4373CrossRefGoogle Scholar
  12. 12.
    Majidi MR, Kane-Maguire LAP, Wallace GG (1994) Polymer 35:3113CrossRefGoogle Scholar
  13. 13.
    Libert J, Cornil J, Dos Saantos DA, Bredas JL (1997) Phys Rev B 56:8638CrossRefGoogle Scholar
  14. 14.
    Wei Z, Laitinen T, Smarsly B, Ikkala O, Faul CFJ (2005) Angew Chem Int Ed 44:751CrossRefGoogle Scholar
  15. 15.
    Huang TC, Yeh TC, Huang HY, Ji WF, Chou YC, Hung WI, Yeh JM, Tsai MH (2011) Electrochimica Acta 56:10151CrossRefGoogle Scholar
  16. 16.
    Huang HY, Jian JW, Lee YT, Li YT, Huang TC, Chang JH, Yeh LC, Yeh JM (2012) Polymer 53:4967CrossRefGoogle Scholar
  17. 17.
    Liu Y, Hu J, Zhuang X, Zhang P, Chen X, Wei Y, Wang X (2011) Macromol Biosci 11:806CrossRefGoogle Scholar
  18. 18.
    Kim TG, Park JW (2012) J Polym Sci Part A: Polym Chem 50:1851CrossRefGoogle Scholar
  19. 19.
    Guo B, Finne-Wistrand A, Albertsson AC (2011) Macromolecules 44:5227CrossRefGoogle Scholar
  20. 20.
    Jia X, Chao D, Berda EB, Pei S, Liu H, Zheng T, Wang C (2011) J Mater Chem 21:18317CrossRefGoogle Scholar
  21. 21.
    Wang S, Chao D, Berda EB, Jia X, Yang R, Wang X, Jiang T, Wang C (2013) RSC Advances 3:4059CrossRefGoogle Scholar
  22. 22.
    Jia X, Chao D, Liu H, He L, Zheng T, Bian X, Wang C (2011) Polym Chem 2:1300CrossRefGoogle Scholar
  23. 23.
    Jeevananda T, Siddaramaiah SS, Saravanan S, D’Souza L (2004) Synth Met 140:247CrossRefGoogle Scholar
  24. 24.
    Watanabe A, Mori K, Iwasaki Y, Nakamura Y, Niizuma S (1987) Macromolecules 20:1793CrossRefGoogle Scholar
  25. 25.
    Malta M, Gonzalez ER, Torresi RM (2002) Polymer 43:5895CrossRefGoogle Scholar
  26. 26.
    Vamvounis G, Schulz GL, Holdcroft S (2004) Macromolecules 37:8897CrossRefGoogle Scholar
  27. 27.
    Ho PKH, Kim JS, Burroughes JH, Becker H, Li SFY, Brown TM, Cacialli F, Friend RH (2000) Nature 404:481CrossRefGoogle Scholar
  28. 28.
    Naga N, Ohkura Y, Tagaya N, Tomoda H (2011) J Polym Sci Part A: Polym Chem 49:4935CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Danming Chao
    • 1
  • Shutao Wang
    • 1
  • Rui Yang
    • 1
  • Erik B. Berda
    • 2
  • Ce Wang
    • 1
  1. 1.Alan G. MacDiarmid Institute, College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of Chemistry and Materials Science ProgramUniversity of New HampshireDurhamUSA

Personalised recommendations