Colloid and Polymer Science

, Volume 291, Issue 8, pp 1881–1886 | Cite as

Generation of nanocomposites based on polystyrene-grafted CdSe nanoparticles by grafting through and block copolymer

  • Haritz Etxeberria
  • Iñaki Zalakain
  • Iñaki Mondragon
  • Arantxa Eceiza
  • Galder Kortaberria
Original Contribution

Abstract

Continuing with our previous work, in which CdSe nanoparticles were functionalized with polystyrene (PS) brushes (CdSe-PS) by the grafting through method, nanocomposites were prepared by adding them to a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer. After characterizing CdSe-PS nanoparticles obtained at different polymerization times of 3, 5, and 8 h by means of thermogravimetric analysis and gel permeation chromatography, CdSe-PS nanoparticles obtained after 5 h of polymerization (CdSe-PS(5h)) were chosen as the most adequate for the generation of nanocomposites. Atomic force microscopy (AFM) was used for morphological characterization of SBS/CdSe-PS(5h) nanocomposites. AFM images showed a good dispersion of the nanoparticles in the block copolymer, with the placement of the nanoparticles in the PS domains due to the improved affinity obtained by their functionalization with PS brushes.

Keywords

Grafting through CdSe nanoparticles Block copolymer Nanocomposite 

References

  1. 1.
    Helfand E, Wasserman ZR (1976) Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 9:879–888CrossRefGoogle Scholar
  2. 2.
    Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617CrossRefGoogle Scholar
  3. 3.
    Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–1098CrossRefGoogle Scholar
  4. 4.
    Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52:32–38CrossRefGoogle Scholar
  5. 5.
    Lodge TP (2003) Block copolymers: past successes and future challenges. Macrom Chem Phys 204:265–273CrossRefGoogle Scholar
  6. 6.
    Zalakain I, Ramos JA, Fernandez R, Etxeberria H, Mondragon I (2011) Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate. Thin Solid Films 519:1882–1885CrossRefGoogle Scholar
  7. 7.
    Zalakain I, Ramos JA, Fernandez R, Etxeberria H, Mondragon I (2012) Silicon and carbon substrates induced arrangement changes in poly(styrene-b-isoprene-b-styrene) block copolymer thin films. J Appl Polym Sci 125:1552–1558CrossRefGoogle Scholar
  8. 8.
    Gan Z, Jim TF, Li M, Yuer Z, Wang S, Wu C (1999) Enzymatic biodegradation of poly(ethylene oxide-b-ε-caprolactone) diblock copolymer and its potential biomedical applications. Macromolecules 32:590–594CrossRefGoogle Scholar
  9. 9.
    Mequanint K, Patel A, Bezuidenhout D (2006) Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-block-poly(glycerol methacrylate) hydrogels. Biomacromolecules 7:883–891CrossRefGoogle Scholar
  10. 10.
    Peres LO, Gruber J (2007) The use of block copolymers containing PPV in gas sensors for electronic noses. Mater Sci Eng C 27:67–69CrossRefGoogle Scholar
  11. 11.
    Bockstaller MR, Lapetnikov Y, Margel S, Thomas EL (2003) Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J Am Chem Soc 125:5276–5277CrossRefGoogle Scholar
  12. 12.
    Arora H, Li ZH, Sai H, Kamperman M, Warren SC, Wiesner U (2010) Block copolymer directed nanoporous metal thin films. Macromol Rapid Commun 31:1960–1964CrossRefGoogle Scholar
  13. 13.
    Bockstaller MR, Mickiewicz RA, Thomas EL (2005) Block copolymer nanocomposites: perspectives for tailored functional materials. Adv Mater 17:1331–1349CrossRefGoogle Scholar
  14. 14.
    Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRefGoogle Scholar
  15. 15.
    Glogowski E, Tangirala R, Russell TP, Emrick T (2006) Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. J Polym Sci Polym Chem 44:5076–5086CrossRefGoogle Scholar
  16. 16.
    Sun Z, Bai F, Wu H, Boye DM, Fan H (2012) Monodisperse fluorescent organic/inorganic composite nanoparticles: tuning full color spectrum. Chem Mater 24:3415–3419CrossRefGoogle Scholar
  17. 17.
    Lin Y, Daga VK, Anderson ER, Gido SP, Watkins JJ (2011) Nanoparticle-driven assembly of block copolymers: a simple route to ordered hybrid materials. J Am Chem Soc 133:6513–6516CrossRefGoogle Scholar
  18. 18.
    Lo CT, Lee B, Gao MW, Chou PW (2012) Ordering of block copolymer/nanoparticle composite thin films. Polym Int. doi:10.1002/pi.4303
  19. 19.
    Jang G, Kramer EJ, Hawker CJ (2011) Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding. J Am Chem Soc 133:16986–16996CrossRefGoogle Scholar
  20. 20.
    Jang G, Khan A, Hawker CJ, Kramer EJ (2012) Morphology evolution of PS-b-P2VP diblock copolymers via supramolecular assembly of hydroxylated gold nanoparticles. Macromolecules 45:1553–1561CrossRefGoogle Scholar
  21. 21.
    Synytska A, Ionov L, Minko S, Motornov M, Elchorn K, Stamm M, Grundke K (2004) Tuning wettability by controlled roughness and surface modification using core-shell particles. Polym Mater Sci Eng 90:624–625Google Scholar
  22. 22.
    Wang TL, Yang CH, Shieh YT, Yeh AC (2009) Synthesis of CdSe–poly(N-vinylcarbazole) nanocomposite by atom transfer radical polymerization for potential optoelectronic applications. Macromol Rapid Commun 30:1679–1683CrossRefGoogle Scholar
  23. 23.
    Etxeberria H, Zalakain I, Tercjak A, Eceiza A, Kortaberria G, Mondragon I (2012) Functionalisation of CdSe semiconductor nanoparticles with polystyrene brushes by radical polymerization. J Nanosci Nanotech. doi:10.1166/jnn.2012.6858
  24. 24.
    Etxeberria H, Kortaberria G, Zalakain I, Larrañaga A, Mondragon I (2012) Effect of different aqueous synthesis parameters on the size of CdSe nanocrystals. J Mater Sci 47:7167–7174CrossRefGoogle Scholar
  25. 25.
    Garcia I, Tercjak A, Zafeiropoulos NE, Stamm M, Mondragon I (2007) Self-assembling nanomaterials using magnetic nanoparticles modified with polystyrene brushes. Macromol Rapid Commun 28:2361–2365CrossRefGoogle Scholar
  26. 26.
    Yoon H, Lee J, Park DW, Hong CH, Shim SE (2010) Preparation and electrorheological characteristic of CdS/polystyrene composite particles. Colloid Polym Sci 288:613–619CrossRefGoogle Scholar
  27. 27.
    Etxeberria H, Zalakain I, Fernandez R, Kortaberria G, Mondragon I (2012) Controlled placement of polystyrene-grafted CdSe nanoparticles in self-assembled block copolymers. Colloid Polym Sci. doi:10.1007/s00396-012-2765-0
  28. 28.
    Xu C, Ohno K, Ladmiral V, Composto RJ (2008) Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49:3568–3577CrossRefGoogle Scholar
  29. 29.
    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Gehgoodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix-grafted multiwalled carbon nanotubes/ poly(methyl methacrylate) nanocomposites synthesized by in situ raft polymerization: a kinetic study. Int J Chem Kinet 44:555–569CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Haritz Etxeberria
    • 1
  • Iñaki Zalakain
    • 1
  • Iñaki Mondragon
    • 1
  • Arantxa Eceiza
    • 1
  • Galder Kortaberria
    • 1
  1. 1.‘Materials + Technologies’ Group, Escuela Politécnica, Department of Chemical and Environmental EngineeringUniversidad País Vasco/Euskal Herriko UnibertsitateaSan SebastiánSpain

Personalised recommendations