Colloid and Polymer Science

, Volume 291, Issue 5, pp 1219–1226 | Cite as

Interaction of polyoxometalates with linear polyamines

  • Vincent Ball
  • Maria Barsukova-Stuckart
  • Ulrich Kortz
Original Contribution


Polyoxometalates (POMs) are inorganic metal oxoanions with a negative charge, stabilized in the solid state by the corresponding number of countercations and possibly protons. In aqueous solution, the dissociation of all ion pairs is not necessarily quantitative because this would result in strong electrostatic repulsion among the polyanions. In the present communication, we show that the effective charge of the donut-shaped 30-tungsto-5-phosphate [NaP5W30O110]14− (P5W30) is close to its “structural charge” of 14 elementary negative charges in the presence of linear polyamines, namely, poly(allylamine hydrobromide) and poly(l-lysine hydrobromide) in a 10-mM NaBr electrolyte. When phase separation occurs, leading to a precipitate (rich in polyanion) and an almost clear supernatant, the charge ratio of the number of moles of cationic groups to polyanion is close to 14, showing that the effective charge in a solution of P5W30 is indeed equal to −14e in the presence of polycations.


Polyoxometalates Structural charge Effective charge Phase separation Polyelectrolyte–inorganic cluster aggregates 


  1. 1.
    Bungenberg de Jong H (1952) Crystallisation–coacervation–flocculation. In: Kruyt HR (ed) Colloid science II. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Bungenberg de Jong H, Kruyt H (1929) Proc Sect Sci K Ned Akad Wetenschappen 32:849–865Google Scholar
  3. 3.
    Trukhanova ES, Izumrudov VA, Litmanovich AA, Zelikin AN (2005) Recognition and selective binding of DNA by ionenes of different charge density. Biomacromolecules 6:3198–3201CrossRefGoogle Scholar
  4. 4.
    Zhao Q, Qian J, An Q, Yang Q, Gui Z (2009) Synthesis and characterization of solution-processable polyelectrolyte complexes and their homogeneous membranes. ACS Appl Mater & Interf 1:90–96CrossRefGoogle Scholar
  5. 5.
    Shamoun RF, Reisch A, Schlenoff JB (2012) Extruded saloplastic polyelectrolyte complexes. Adv Funct Mater 22:1923–1931CrossRefGoogle Scholar
  6. 6.
    Berret J-F (2009) Sphere-to-cylinder transition in hierarchical electrostatic complexes. Colloid Polym Sci 287:801–819CrossRefGoogle Scholar
  7. 7.
    Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. I. Effect of chain flexibility. Langmuir 12:305–314CrossRefGoogle Scholar
  8. 8.
    Mattison K, Dubin PL, Brittain LJ (1998) Complex formation between bovine serum albumin and strong polyelectrolytes: effect of polymer charge density. J Phys Chem B 102:3830–3836CrossRefGoogle Scholar
  9. 9.
    Dautezenberg H, Kriz J (2003) Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir 19:5204–5211CrossRefGoogle Scholar
  10. 10.
    Penott-Chang EK, Pergushov DV, Zezin AB, Müller AHE (2010) Interpolyelectrolyte complexation in chloroform. Langmuir 26:7813–7818CrossRefGoogle Scholar
  11. 11.
    Porcel CH, Schlenoff JB (2009) Compact polyelectrolyte complexes: “saloplastic” candidates for biomaterials. Biomacromolecules 10:2968–2975CrossRefGoogle Scholar
  12. 12.
    Karibyants N, Dautzenberg H (1998) Preferential binding with regard to chain length and chemical structure in the reactions of formation of quasi soluble polyelectrolyte complexes. Langmuir 14:4427–4434CrossRefGoogle Scholar
  13. 13.
    Chollakup R, Smitthipong W, Eisenbach CD, Tirrell M (2010) Phase behavior and coacervation of aqueous poly(acrylic acid)–poly(allylamine) solutions. Macromolecules 43:2518–2528CrossRefGoogle Scholar
  14. 14.
    Cini N, Tulun T, Blanck C, Toniazzo V, Ruch D, Decher G, Ball V (2012) Slow complexation dynamics between linear short polyphosphates and polyallylamines: analogies with “layer-by-layer” deposits. Phys Chem Chem Phys 14:3048–3056CrossRefGoogle Scholar
  15. 15.
    Qi L, Fresnais J, Berret J-F, Castaing J-C, Grillo I, Chapel J-P (2010) Influence of the formulation process in electrostatic assembly of nanoparticles and macromolecules in aqueous solution: the mixing pathway. J Phys Chem C 114:12870–12877CrossRefGoogle Scholar
  16. 16.
    Naderi A, Claesson PM, Bergström M, Deninaité A (2005) Trapped non-equilibrium states in aqueous solutions of oppositely charged polyelectrolytes and surfactants: effects of mixing protocol and salt concentration. Colloids & Surf A: Physicochem Eng Aspects 253:83–93CrossRefGoogle Scholar
  17. 17.
    Bakeev KN, Izumrudov VA, Kuchanov SI, Zezin AB, Kabanov VA (1992) Kinetics and mechanism of interpolyelectrolyte exchange and addition reactions. Macromolecules 25:4249–4254CrossRefGoogle Scholar
  18. 18.
    Zintchenko A, Rother G, Dautzenberg H (2003) Transition highly aggregated complexes-soluble complexes via polyelectrolyte exchange reactions: kinetics, structural changes, and mechanism. Langmuir 19:2507–2523CrossRefGoogle Scholar
  19. 19.
    Ball V, Winterhalter M, Schwinte P, Lavalle P, Voegel J-C, Schaaf P (2002) Complexation mechanism of bovine serum albumin and poly(allylamine hydrochloride). J Phys Chem B 106:2357–2364CrossRefGoogle Scholar
  20. 20.
    Mansfeld J, Forster M, Schellenberger A, Dautzenberg H (1991) Immobilization of invertase by encapsulation in polyelectrolyte complexes. Enzym Microb Technol 13:240–244CrossRefGoogle Scholar
  21. 21.
    Kizilay E, Kayitmazer AB, Dubin PL (2011) Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv Colloid & Interf Sci 167:24–37CrossRefGoogle Scholar
  22. 22.
    Claesson PM, Bergström M, Dedinaite A, Kjellin M, Legrand JF, Grillo I (2000) Mixtures of cationic polyelectrolyte and anionic surfactant studied with small-angle neutron scattering. J Phys Chem B 104:11689–11694CrossRefGoogle Scholar
  23. 23.
    Zhou S, Hu H, Burger C, Chu B (2001) Phase structural transitions of polyelectrolyte–surfactant complexes between poly(vinyl amine hydrochloride) and oppositely charged sodium alkyl sulfate. Macromolecules 34:1772–1778CrossRefGoogle Scholar
  24. 24.
    Long D-L, Burkholder E, Cronin L (2007) Polyoxometalate clusters, nanostructures and materials: from self-assembly to designer materials and devices. Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  25. 25.
    Carn F, Stenou N, Djabourov M, Coradin T, Ribot F, Livage J (2008) First example of biopolymer–polyoxometalate complex coacervation in gelatin–decavanadate mixtures. Soft Matter 4:735–738CrossRefGoogle Scholar
  26. 26.
    Schaming D, Costa-Coquelard C, Sorgues S, Ruhlmann L, Lampre I (2010) Photocatalytic reduction of Ag2SO4 by electrostatic complexes formed by tetracationic zinc porphyrins and tetracobalt Dawson-derived sandwich polyanion. Appl Catal A 373:160–167CrossRefGoogle Scholar
  27. 27.
    Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J Chem Phys 51:924–933CrossRefGoogle Scholar
  28. 28.
    Liu G, Kistler ML, Li T, Bhatt A, Liu T (2006) Counter-ion association effect in dilute giant polyoxometalate [(As12CeIII)-Ce-III (16)(H2O)(36)W148O524]76−({W-148}) and [Mo132O372(CH3COO)(30) (H2O)(72)]42−({Mo-132}) macroanionic solutions. J Cluster Sci 17:427–443CrossRefGoogle Scholar
  29. 29.
    Liu T (2002) Supramolecular structures of polyoxomolybdate-based giant molecules in aqueous solution. J Amer Chem Soc 124:10942–10943CrossRefGoogle Scholar
  30. 30.
    Liu T, Diemann E, Li H, Dress A, Müller A (2003) Self-assembly in aqueous solution of wheel-shaped Mo-154 oxide clusters into vesicles. Nature 426:59–62CrossRefGoogle Scholar
  31. 31.
    Verhoeff AA, Kistler ML, Bhatt A, Pigga J, Groenewold J, Klokkenburg M, Veen S, Roy S, Liu T, Kegel WK (2007) Charge regulation as a stabilization mechanism for shell-like assemblies of polyoxometalates. Phys Rev Lett 99:066104CrossRefGoogle Scholar
  32. 32.
    Michaels AS (1965) Polyelectrolyte complexes. Ind Eng Chem 57:32–40CrossRefGoogle Scholar
  33. 33.
    Michaels AS, Mir L, Schneider NS (1965) A conductometric study of polycation–polyanion reactions in dilute aqueous solution. J Phys Chem 69:1447–1455CrossRefGoogle Scholar
  34. 34.
    Bucur CB, Sui Z, Schlenoff JB (2006) Ideal mixing in polyelectrolyte complexes and multilayers: entropy driven assembly. J Amer Chem Soc 128:13690–13691CrossRefGoogle Scholar
  35. 35.
    Gummel J, Cousin F, Boué F (2007) Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J Amer Chem Soc 129:5806–5807CrossRefGoogle Scholar
  36. 36.
    Mascotti D, Lohman TM (1990) Thermodynamic extent of counterion release upon binding oligolysines to single-stranded nucleic acids. Proc Natl Acad Sci 87:3142–3146CrossRefGoogle Scholar
  37. 37.
    Alizadeh MH, Harmalker SP, Jeannin Y, Martin-Frère J, Pope MT (1985) A heteropolyanion with fivefold molecular symmetry that contains a nonlabile encapsulated sodium ion. The structure and chemistry of [NaP5W30O110]14-. J Am Chem Soc 107:2662–2669CrossRefGoogle Scholar
  38. 38.
    Cantor CR, Schimmel PR (1998) Biophysical chemistry part II: techniques for the study of biological structure and function, 11th edn. W.H. Freeman and Company, New York, p 376Google Scholar
  39. 39.
    Atkins PW (1990) Physical chemistry, 4th edn, chapter 25. Oxford University Press, OxfordGoogle Scholar
  40. 40.
    Volodkin D, Ball V, Voegel J-C, Möhwald H (2007) Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation. Biochim et Biophys Acta Biomembranes 1768:280–290CrossRefGoogle Scholar
  41. 41.
    Chen J, Heitmann JA, Hubbe MA (2003) Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids & Surf A Phys & Eng Asp 223:215–230CrossRefGoogle Scholar
  42. 42.
    Huber K, Scheler U (2012) New experiments for the quantification of counterion condensation. Curr Opin Colloid Interf Sci 17:64–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vincent Ball
    • 1
    • 2
  • Maria Barsukova-Stuckart
    • 3
  • Ulrich Kortz
    • 3
  1. 1.Department for Advanced Materials and StructuresCentre de Recherche Public Henri TudorHautcharageLuxembourg
  2. 2.Faculté de Chirurgie Dentaire, Unité INSERM 1121Université de StrasbourgStrasbourgFrance
  3. 3.School of Engineering and ScienceJacobs UniversityBremenGermany

Personalised recommendations