Advertisement

Colloid and Polymer Science

, Volume 291, Issue 4, pp 919–925 | Cite as

Effect of carbon chain length of monocarboxylic acids on cloud point temperature of poly(2-ethyl-2-oxazoline)

  • Jaweria Ambreen
  • Jinxian Yang
  • Xiaodong YeEmail author
  • Mohammad Siddiq
Original Contribution

Abstract

The temperature-induced phase transition of poly(2-ethyl-2-oxazoline) (PEtOx) aqueous solution under mixing with a series of small carboxylic acids has been studied by turbidity measurements and laser light scattering. It has been found that cloud point temperature (T cp) of the PEtOx was changed to varying degrees depending upon the pH, ionic strength, molar ratio of acids to 2-ethyl-2-oxazoline unit, and carbon chain length of small carboxylic acids. Significant change in T cp was observed in the case of hexanoic acid. At acidic pH, an increase in the molar ratio of hexanoic acid to the 2-ethyl-2-oxazoline unit gradually decreased the phase transition temperature of the polymer as compared to the T cp of pure PEtOx. At original pH 6 (pH > pK a), T cp shifts to higher value than that of pure PEtOx for lower molar ratios and decreased later on with increasing the molar ratio. The shift in the T cp is described based on the differences in the driving force of phase transition, including hydrogen bonding between small carboxylic acids and PEtOx polymer and hydrophobic interaction.

Keywords

Laser light scattering Phase transition Stimuli-sensitive polymers Transmittance UV–Vis spectrophotometer 

Notes

Acknowledgments

The financial support of the National Program on Key Basic Research Project (2012CB933802), the National Natural Scientific Foundation of China (NNSFC) Projects (No. 20804043 and No. 21274140), Third World Academy of Science and Chinese Academy of Science (TWAS-CAS), Higher Education Commission of Pakistan, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry is gratefully acknowledged.

References

  1. 1.
    Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein. Adv Drug Delivery Rev 31:197–221CrossRefGoogle Scholar
  2. 2.
    Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol–gel reversible hydrogels. Adv Drug Delivery Rev 54:37–51CrossRefGoogle Scholar
  3. 3.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev 58:1655–1670CrossRefGoogle Scholar
  4. 4.
    Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595CrossRefGoogle Scholar
  5. 5.
    Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 27:1165–1193CrossRefGoogle Scholar
  6. 6.
    Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994CrossRefGoogle Scholar
  7. 7.
    Diehl C, Schlaad H (2009) Thermo-responsive polyoxazolines with widely tuneable LCST. Macromol Biosci 9:157–161CrossRefGoogle Scholar
  8. 8.
    Park JS, Kataoka K (2006) Precise control of lower critical solution temperature of thermosensitive Poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules 39:6622–6630CrossRefGoogle Scholar
  9. 9.
    Thijs HML, Van Kuringen HPC, Van der Put JPW, Schubert US, Hoogenboom R (2010) Temperature induced solubility transitions of various poly(2-oxazoline)s in ethanol–water solvent mixtures. Polymers 2:188–199CrossRefGoogle Scholar
  10. 10.
    Hoogenboom R, Thijs HML, Jochem MJHC, Van Lankvelt BM, Fijten MWM, Schubert US (2008) Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide). Chem Commun 44:5758–5760CrossRefGoogle Scholar
  11. 11.
    Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese FM (2011) Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjugate Chem 22:976–986CrossRefGoogle Scholar
  12. 12.
    Mero A, Pasut G, Dalla Via L, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM (2008) Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates. J Control Release 125:87–95CrossRefGoogle Scholar
  13. 13.
    Lee SC, Kim C, Kwon IC, Chung H, Jeong SY (2003) Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) copolymer as a carrier for paclitaxel. J Control Release 89:437–446CrossRefGoogle Scholar
  14. 14.
    Gaertner FC, Luxenhofer R, Blechert B, Jordan R, Essler M (2007) Synthesis, biodistribution and excretion of radio labeled poly(2-alkyl-2-oxazoline)s. J Control Release 119:291–300CrossRefGoogle Scholar
  15. 15.
    Hsiue GH, Wang CH, Lo CL, Wang CH, Li JP, Yang JL (2006) Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery. Int J Pharm 317:69–75CrossRefGoogle Scholar
  16. 16.
    Wiesbrock F, Hoogenboom R, Abeln CH, Schubert US (2004) Single-mode microwave ovens as new reaction devices: accelerating the living polymerization of 2-ethyl-2-oxazoline. Macromol Rapid Commun 25:1895–1899CrossRefGoogle Scholar
  17. 17.
    Lin PY, Clash C, Pearce EM, Kwei TK, Aponte MA (1988) Solubility and miscibility of poly(ethyl-oxazoline). J Polym Sci B-Polym Phys 26:603–619CrossRefGoogle Scholar
  18. 18.
    Haruna M (2010) Synthesis and characterization of temperature responsive poly(2-ethyl-2-oxazolines). Bajopas 3:250–254Google Scholar
  19. 19.
    Bloksma MM, Bakker DJ, Weber C, Hoogenboom R, Schubert US (2010) The effect of Hofmeister salts on the LCST transition of poly(2-oxazoline)s with varying hydrophilicity. Macromol Rapid Commun 31:724–728CrossRefGoogle Scholar
  20. 20.
    Burova TV, Grinberg NV, Grinberg VY, Kalinina EV, Lozinsky VI, Aseyev VO, Holappa S, Tenhu H, Khoklov AR (2005) Unusual conformational behavior of complexes of poly(N-isopropylacrylamide) with poly(methacrylic acid). Macromolecules 38:1292–1299CrossRefGoogle Scholar
  21. 21.
    Garay MT, Llamas MC, Iglesias E (1997) Study of polymer–polymer complexes and blends of poly(N-isopropylacrylamide) with poly(carboxylic acid): 1. Poly(acrylic acid) and poly(methacrylic acid). Polymer 38:5091–5096CrossRefGoogle Scholar
  22. 22.
    Koussathana M, Lianos P, Staikos G (1997) Investigation of hydrophobic interactions in dilute aqueous solutions of hydrogen-bonding interpolymer complexes by steady-state and time-resolved fluorescence measurements. Macromolecules 30:7798–7802CrossRefGoogle Scholar
  23. 23.
    Garay MT, Alava C, Rodriguez M (2000) Study of polymer–polymer complexes and blends of poly(N-isopropylacrylamide) with poly(carboxylic acid). 2. Poly(acrylic acid) and poly(methacrylic acid) partially neutralized. Polymer 41:5799–5807CrossRefGoogle Scholar
  24. 24.
    Bian F, Liu M (2003) Complexation between poly(N, N-diethylacrylamide) and poly(acrylic acid) in aqueous solution. Eur Polym J 39:1867–1874CrossRefGoogle Scholar
  25. 25.
    Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293CrossRefGoogle Scholar
  26. 26.
    Lichkus AM, Painter PC, Coleman MM (1988) Hydrogen bonding in polymer blends. 5. Blends involving polymers containing methacrylic acid and oxazoline groups. Macromolecules 21:2636–2641CrossRefGoogle Scholar
  27. 27.
    Chen FL, Pearce EM, Kwei TK (1988) Intermacromolecular complexes by in situ polymerization. Polymer 29:2285–2289CrossRefGoogle Scholar
  28. 28.
    Kim C, Lee SC, Kwon IC, Chung H, Jeong SY (2002) Complexation of poly(2-ethyl-2-oxazoline)-block-poly(ε-caprolactone) micelles with multifunctional carboxylic acids. Macromolecules 35:193–200CrossRefGoogle Scholar
  29. 29.
    Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099CrossRefGoogle Scholar
  30. 30.
    Chu B (1991) Laser light scattering, basic principles and practice, 2nd edn. Academic, New York, chapter 2 and 8Google Scholar
  31. 31.
    Wu C, Xia KQ (1994) Incorporation of a differential refractometer into a laser light-scattering spectrometer. Rev Sci Instrum 65:587–590CrossRefGoogle Scholar
  32. 32.
    Bijsterbosch HD, Cohen Stuart MA, Fleer GJ, van Caeter P, Goethals EJ (1998) Nonselective adsorption of block copolymers and the effect of block incompatibility. Macromolecules 31:7436–7444CrossRefGoogle Scholar
  33. 33.
    Berne BJ, Pecora R (1976) Dynamic light scattering. Plenum, New YorkGoogle Scholar
  34. 34.
    Diab C, Akiyama Y, Kataoka K, Winnik FM (2004) Microcalorimetric study of the temperature-induced phase separation in aqueous solutions of poly(2-isopropyl-2-oxazolines). Macromolecules 37:2556–2562CrossRefGoogle Scholar
  35. 35.
    Park JS, Akiyama Y, Winnik FM, Kataoka K (2004) Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules 37:6786–6792CrossRefGoogle Scholar
  36. 36.
    Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F (2003) New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer 44:2255–2261CrossRefGoogle Scholar
  37. 37.
    Zhou S, Fan S, Au-yeung SCF, Wu C (1995) Light-scattering studies of poly(N-isopropylacrylamide) in tetrahydrofuran and water. Polymer 36:1341–1346CrossRefGoogle Scholar
  38. 38.
    Mattoussi H, O’Donohue S, Karasz FE (1992) Polyion conformation and second virial coefficient dependences on the ionic strength for flexible polyelectrolyte solutions. Macromolecules 25:743–749CrossRefGoogle Scholar
  39. 39.
    Lide DV (2009) Handbook of chemistry and physics, 90th edn. CRC, Boca RatonGoogle Scholar
  40. 40.
    Namazian M, Halvani S (2006) Calculations of pK a values of carboxylic acids in aqueous solution using density functional theory. J Chem Therm 38:1495–1502CrossRefGoogle Scholar
  41. 41.
    Jones MS (1999) Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid. Eur Polym J 35:795–801CrossRefGoogle Scholar
  42. 42.
    Van Kuringen HPC, De la Rosa VR, Fijten MWM, Heuts JPA, Hoogenboom R (2012) Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol–water resulting in linear poly(ethylene imine) copolymers. Macromol Rapid Commun 33:827–832CrossRefGoogle Scholar
  43. 43.
    Weber C, Becer CR, Hoogenboom R, Schubert US (2009) Lower critical solution temperature behavior of comb and graft shaped poly[oligo(2-ethyl-2 oxazoline)methacrylate]s. Macromolecules 42:2965–2971CrossRefGoogle Scholar
  44. 44.
    Weber C, Becer CR, Guenther W, Hoogenboom R, Schubert US (2010) Dual responsive methacrylic acid and oligo(2-ethyl-2-oxazoline) containing graft copolymers. Macromolecules 43:160–167CrossRefGoogle Scholar
  45. 45.
    Huber S, Jordan R (2008) Modulation of the lower critical solution temperature of 2-alkyl-2-oxazoline copolymers. Colloid Polym Sci 286:395–402CrossRefGoogle Scholar
  46. 46.
    Park JS, Kataoka K (2007) Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization. Macromolecules 40:3599–3609CrossRefGoogle Scholar
  47. 47.
    Hoogenboom R, Thijs HML, Wouters D, Hoeppenera S, Schubert US (2008) Tuning solution polymer properties by binary water–ethanol solvent mixtures. Soft Matter 4:103–107CrossRefGoogle Scholar
  48. 48.
    Weng YM, Ding YW, Zhang GZ (2006) Microcalorimetric investigation on the lower critical solution temperature behavior of N-isopropycrylamide-co-acrylic acid copolymer in aqueous solution. J Phys Chem B 110:11813–11817CrossRefGoogle Scholar
  49. 49.
    Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500CrossRefGoogle Scholar
  50. 50.
    Chen G, Hoffmann AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52CrossRefGoogle Scholar
  51. 51.
    Hofmann AS et al (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586CrossRefGoogle Scholar
  52. 52.
    Tang YC, Ding YW, Zhang GZ (2008) Role of methyl in the phase transition of poly(N-isopropylmethacrylamide). J Phys Chem B 112:8447–8451CrossRefGoogle Scholar
  53. 53.
    Hoogenboom R (2007) Poly(2-oxazoline)s: alive and kicking. Macromol Chem Phys 208:18–25CrossRefGoogle Scholar
  54. 54.
    Hoogenboom R (2011) Poly(2-oxazoline)s based on fatty acids. Eur J Lipid Sci Technol 113:59–71CrossRefGoogle Scholar
  55. 55.
    Ralston AW, Hoerr CW (1942) The solubilities of the normal saturated fatty acids. J Org Chem 7:546–555CrossRefGoogle Scholar
  56. 56.
    Nurkeeva ZS, Mun GA, Khutoryanskiy VV, Sergaziev AD (2001) Complex formation between poly(vinyl ether of diethylene glycol) and poly(acrylic acid). I. Effect of low molecular salts and phenol additives. Eur Polym J 37:1233–1237CrossRefGoogle Scholar
  57. 57.
    Staikos G, Tsitsilianis C (1991) Viscometric investigation of the poly (acrylic acid)–polyacrylamide interpolymer association. J Appl Polym Sci 42:867–872CrossRefGoogle Scholar
  58. 58.
    Moharram MA, Balloomal LS, El-Gendy HM (1996) Infrared study of the complexation of poly(acrylic acid) with poly(acry1amide). J Appl Polym Sci 59:987–989CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jaweria Ambreen
    • 1
    • 2
  • Jinxian Yang
    • 1
  • Xiaodong Ye
    • 1
    • 3
    Email author
  • Mohammad Siddiq
    • 2
  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of ChemistryQuaid-I-Azam UniversityIslamabadPakistan
  3. 3.CAS Key Laboratory of Soft Matter ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations