Advertisement

Colloid and Polymer Science

, Volume 291, Issue 4, pp 805–815 | Cite as

Porous “sponge-like” anatase TiO2 via polymer templates: synthesis, characterization, and performance as a light-scattering material

  • Lukasz Szymanski
  • Praveen Surolia
  • Owen Byrne
  • K. Ravindranathan Thampi
  • Cosima Stubenrauch
Original Contribution

Abstract

The synthesis of porous “sponge-like” TiO2 via a polymer gel coating technique is presented. The experimental procedure involves the preparation of a gelled polymerizable microemulsion. The polymerization of the latter leads to porous poly-N-isopropylacrylamide which forms a hydrogel in the presence of water. Via solvent exchange, a suitable TiO2 precursor is infiltrated into this structure after which its in situ hydrolysis is triggered to form porous amorphous TiO2. The subsequent calcination step allows the removal of the polymer template and the transformation of amorphous TiO2 into porous, crystalline anatase with domain sizes ranging from 200 to 250 nm. As a means of verification and proof of concept, this material is tested as light-scattering layer in dye-sensitized solar cells (DSSC), and it is found that the resulting solar cell performance is comparable to commercially available TiO2. However, an increased tendency to form rutile during DSSC fabrication was noticed when compared to commercial TiO2. As there is a large potential for optimizing the synthesis, the proposed procedure is a promising route towards porous TiO2 that performs significantly better as scattering layer in light-harvesting and optical devices.

Keywords

Gelled microemulsion Templating Porous polymers DSSC TiO2 

Notes

Acknowledgments

The authors wish to thank P. Comte and P. Liska of LPI-EPFL for giving helpful suggestions. Finally, we need to thank Dr. Serguei Belochapkine for carrying out the BET measurements. This work was supported by the Science Foundation Ireland (SFI) under grant no. 07/SRC/B1160. Praveen Surolia acknowledges the funding support received from IRCSET and SolarPrint under the EMPOWER Industry partnership research funding program. Owen Byrne received support from European Commission’s FP7 SMARTOP project under the grant agreement number 265769.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Supplementary material

396_2012_2792_MOESM1_ESM.docx (101 kb)
ESM 1 (DOCX 101 kb)

References

  1. 1.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  2. 2.
    Attard GS, Edgar M, Göltner CG (1998) Inorganic nanostructures from lyotropic liquid crystal phases. Acta Mater 46:751–758CrossRefGoogle Scholar
  3. 3.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  4. 4.
    Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. App Phys Lett 83:3380–3382CrossRefGoogle Scholar
  5. 5.
    Caruso RA, Giersig M, Willig F, Antonietti M (1998) Porous coral-like TiO2 structures produced by templating polymer gels. Amer Chem Soc 14:6333–6336Google Scholar
  6. 6.
    Caruso RA, Antonietti M, Giersig M, Hentze HP, Jia J (2001) Modification of TiO2 network structures using a polymer gel coating technique. Chem Mater 13:1114–1123CrossRefGoogle Scholar
  7. 7.
    Schattka JH, Wong EHM, Antonietti M, Caruso RA (2006) Sol-gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films. J Mater Chem 16:1414–1420CrossRefGoogle Scholar
  8. 8.
    Lechmann MC, Kessler D, Gutmann JS (2009) Functional Templated for hybrid materials with orthogonal functionality. Langmuir 25:10202–10208CrossRefGoogle Scholar
  9. 9.
    Crossland EJW, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, Toombes GES, Hillmyer MA, Ludwigs S, Steiner U, Snaith HJ (2009) A bicontinuous double gyroid hybrid solar cell. Nano Lett 9:2807–2812CrossRefGoogle Scholar
  10. 10.
    Crossland EJW, Nedelcu M, Ducati C, Ludwigs S, Hillmyer MA, Steiner U, Snaith HJ (2009) Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. Nano Lett 9:2813–2819CrossRefGoogle Scholar
  11. 11.
    Stubenrauch C, Sottmann T (2009) Phase behaviour, interfacial tension and microstructure of microemulsions. In: Microemulsions: background, new concepts, applications, perspectives. Wiley, Oxford, 1–47.Google Scholar
  12. 12.
    Stubenrauch C, Strey R (2009) Future challenges. In: Microemulsions: background, new concepts, applications, perspectives. Wiley, Oxford, 345–366.Google Scholar
  13. 13.
    Moriguchi I, Katsuki Y, Yamada H, Kudo T, Nishimi T (2004) Bicontinuous microemulsion-aided synthesis of mesoporous TiO2. Chem Lett 33:1102–1103CrossRefGoogle Scholar
  14. 14.
    Co CC (2008) Arresting amphiphilic self-assembly. Soft Matter 4:658–662CrossRefGoogle Scholar
  15. 15.
    Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson KA (2007) Gelled polymerizable microemulsions. 1. Phase behavior. Langmuir 23:7730–7737CrossRefGoogle Scholar
  16. 16.
    Stubenrauch C, Tessendorf R, Salvati A, Topgaard D, Sottmann T, Strey R, Lynch I (2008) Gelled polymerizable microemulsions. 2. Microstructure. Langmuir 24:8473–8482CrossRefGoogle Scholar
  17. 17.
    Tessendorf R (2009) Microemulsions as templates for high surface area polymers, Dissertation, University of Cologne.Google Scholar
  18. 18.
    Brizard A, Stuart M, van Bommel K, Friggeri A, de Jong M, van Esch J (2008) Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants. Angew Chem Int Ed 47:2063–2066CrossRefGoogle Scholar
  19. 19.
    Raj WRP, Sasthav M, Cheung HM (1995) Polymerization of single-phase microemulsions: dependence of polymer morphology on microemulsion structure. Polymer 36:2637–2646CrossRefGoogle Scholar
  20. 20.
    Hentze HP, Co CC, McKelvey CA, Kaler EW (2003) Templating vesicles, microemulsions, and lyotropic mesophases by organic polymerization processes. Top Curr Chem 226:197–223CrossRefGoogle Scholar
  21. 21.
    Ferber J, Luther J (1998) Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol Energy Mater Sol Cells 54:265–275CrossRefGoogle Scholar
  22. 22.
    Hore S, Vetter C, Kern R, Smit H (2006) Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:1176–1188CrossRefGoogle Scholar
  23. 23.
    Park NG, van de Lagemat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994CrossRefGoogle Scholar
  24. 24.
    Wang P, Zakeeruddin SM, Comte P, Chauvet R, Baker RH, Grätzel M (2003) Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 Nanocrystals. J Phys Chem B 107:14336–14341CrossRefGoogle Scholar
  25. 25.
    Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  26. 26.
    Thampi KR, Liska P, Wang P, Zakeeruddin SM, Schmidt-Mende L, Klein C, Comte P, Grätzel M (2005) Proceedings of the 20th european photovoltaic solar energy conference. WIP-Renewable Energies, MunichGoogle Scholar
  27. 27.
    Thampi KR (2010) Mesoporous oxide layers applied to advanced energy conversion methods. In: Nanoparticles: synthesis, characterization and applications. American Scientific, USA.Google Scholar
  28. 28.
    Ishimaru A (1978) Wave propagation and scattering in random media. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Rothenberger G, Comte P, Grätzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 58:321–336CrossRefGoogle Scholar
  30. 30.
    Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R (2005) Scattering spherical voids in nanocrystalline TiO2—enhancement of efficiency in dye-sensitized solar cells. Chem Comm 15:2011–2013CrossRefGoogle Scholar
  31. 31.
    Papoutsi D, Panagiotis L, Panagiotis Y, Koutsoukos P (1994) Sol-gel Derived TiO2 Microemulsion gels and coatings. Langmuir 10:16841689Google Scholar
  32. 32.
    Kroon JM, Bakker NJ, Smit HJ, Liska P, Thampi KR, Wang P, Zakeeruddin SM, Grätzel M, Hinsch A, Hore S, Würfel S, Sastrawan R, Durrant JR, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch GE (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog Photovolt: Res Appl 15:1–18CrossRefGoogle Scholar
  33. 33.
    Ito S, Murakami TN, Comte P, Liska P, Grätzel C, Nazeeruddin MK, Grätzel M (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619CrossRefGoogle Scholar
  34. 34.
    Kuang D, Klein C, Ito S, Moser JE, Humphry-Baker R, Evans N, Duriaux F, Grätzel C, Zakeeruddin SM, Grätzel M (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19:1133–1137CrossRefGoogle Scholar
  35. 35.
    Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Grätzel M (2005) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog Photovolt: Res Appl 15:603–612CrossRefGoogle Scholar
  36. 36.
    Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, C-h N, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109CrossRefGoogle Scholar
  37. 37.
    Barringer EA, Bowen HK (1985) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1:414–420CrossRefGoogle Scholar
  38. 38.
    Thampi KR, Bessho T, Gao F, Zakeeruddin SM, Wang P, Grätzel M (2008) Proceedings of the 23rd European photovoltaic solar energy conference. WIP-Renewable Energies, MunichGoogle Scholar
  39. 39.
    Gallardo Amores JM, Escribano VS, Buscab G (1995) Anatase crystal growth and phase transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic systems. J Mater Chem 5:1245–1249CrossRefGoogle Scholar
  40. 40.
    Jamieson JC, Olinger B (1965) High-pressure polymorphism of titanium dioxide. Science 161:893–895CrossRefGoogle Scholar
  41. 41.
    Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lukasz Szymanski
    • 1
    • 2
  • Praveen Surolia
    • 1
  • Owen Byrne
    • 1
  • K. Ravindranathan Thampi
    • 1
  • Cosima Stubenrauch
    • 1
    • 3
  1. 1.SFI Strategic Research Cluster in Solar Energy Conversion, School of Chemical and Bioprocess EngineeringUniversity College DublinBelfieldIreland
  2. 2.Institut für PolymerchemieUniversität StuttgartStuttgartGermany
  3. 3.Institut für Physikalische ChemieUniversität StuttgartStuttgartGermany

Personalised recommendations