Colloid and Polymer Science

, Volume 291, Issue 3, pp 573–583 | Cite as

The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane–multiwalled carbon nanotube composites at low filler contents

  • Lyudmyla V. Karabanova
  • Raymond L. D. Whitby
  • Vladimir A. Bershtein
  • Alina V. Korobeinyk
  • Pavel N. Yakushev
  • Oksana M. Bondaruk
  • Andrew W. Lloyd
  • Sergey V. Mikhalovsky
Original Contribution


Acid-oxidized multiwalled carbon nanotubes (MWCNTs) were introduced into a polyurethane (PU) matrix at low filler levels (0.01–0.25 wt%) through either van der Waals or covalent interactions, and their glass transition dynamics using dynamic mechanical analysis and laser-interferometric creep rate spectroscopy was investigated. The nanocomposites reveal substantial impact on the PU glass transition dynamics, which depends on the nanotube content and type of interfacial interactions. The pronounced dynamic heterogeneity within the glass transition covering 200 °C range and the displacement of main PU relaxation maxima from around 0 to 80–140 °C were registered. The results are treated in the framework of chemical inhomogeneity, constrained dynamics effects, and different motional cooperativities. The peculiariaties of the glass transition dynamics in the composites are reflected in their dynamic and static mechanical properties, in particular a two- to threefold increase in modulus and tensile strength for the covalent interfacial interaction of MWCNTs with PU.


Polyurethane Carbon nanotubes Nanocomposites Interfacial interactions Dynamics 



The authors gratefully acknowledge the FP7-PEOPLE-IRSES-230790 COMPOSITUM Grant and the Royal Society Exchange Visit Grant (Dr. L.V. Karabanova) and the FP7-PEOPLE-IRSES-269267 ENSOR project Grant (Prof. V.A. Bershtein) for the financial support of the collaboration between Nanoscience and Nanotechnology Group at the University of Brighton and the Institute of Macromolecular Chemistry of the National Academy of Science of Ukraine (LVK) and Ioffe Physical-Technical Institute of the Russian Academy of Sciences (VAB), as well as the RCUK Academic Fellowship (Dr R.L.D. Whitby).


  1. 1.
    Spitalsky Z, Tasis D, Papagelis D, Galiotis S (2010) Carbon nantube-polymer composites: chemistry, processing, mechanical and electrical properties. Progr Polym Sci 35:357–401CrossRefGoogle Scholar
  2. 2.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRefGoogle Scholar
  3. 3.
    Pagona G, Mountrichas G, Kotas G, Karousis N, Pispas S, Tarmatarchis N (2009) Properties, applications and functionalization of carbon nanotubes. Int J Nanotechnol 6:176–185CrossRefGoogle Scholar
  4. 4.
    Wu H-C, Chang X, Liu L, Zhao F, Zhao Y (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20:1036–1052CrossRefGoogle Scholar
  5. 5.
    Gao C, Jin YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY et al (2005) Polyurea-functionalized multi-walled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932CrossRefGoogle Scholar
  6. 6.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  7. 7.
    Lehah MD, Cooper SL (1986) Polyurethane in medicine and surgery. CRC Press, Boca Raton, pp 158–167Google Scholar
  8. 8.
    Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomater 22:769–785CrossRefGoogle Scholar
  9. 9.
    Karabanova LV, Lloyd AW, Mikhalovsky SV, Helias M, Philips GJ, Rose SF, Mikhalovska L et al (2006) Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J Mater Sci-Mater Med 17:1283–1296CrossRefGoogle Scholar
  10. 10.
    Jiang F, Hu G, Zhang L (2008) Preparation and characterization of polyurethane/multi-walled carbon nanotubes composites with multifunctional performance. Adv Mater Res 47–50:765–768CrossRefGoogle Scholar
  11. 11.
    Wang X, Du Z, Zhang C, Li C, Yang X, Li H (2008) Multi-walled carbon nanotubes encapsulated with polyurethane and its nanocomposites. J Polym Sci Part A: Polym Chem 46:4857–4865CrossRefGoogle Scholar
  12. 12.
    Jana RN, Cho JW (2008) Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multi-walled carbon nanotubes. J Appl Polym Sci 108:2857–2864CrossRefGoogle Scholar
  13. 13.
    Jana RN, Yoo HJ, Cho JW (2008) Synthesis and properties of shape memory polyurethane nanocomposites reinforced with poly(ε-caprolactone)-grafted carbon nanotubes. Fibers Polym 9:247–254CrossRefGoogle Scholar
  14. 14.
    Raja M, Shanmugharaj AM, Ryu SH (2008) Influence of surface functionalized carbon nanotubes on the properties of polyurethane nanocomposites. Soft Mater 6:65–74CrossRefGoogle Scholar
  15. 15.
    Kwon J-Y, Kim H-D (2005) Preparation and properties of acid-treated multi-walled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96:595–604CrossRefGoogle Scholar
  16. 16.
    Fernández M, Landa M, Muñoz ME, Santamaría A (2010) Thermal and viscoelastic features of new nanocomposites based on a hot-melt adhesive polyurethane and multi-walled carbon nanotubes. Macromol Mater Eng 295:1031–1041CrossRefGoogle Scholar
  17. 17.
    Zhao W, Li M, Peng H-X (2010) Functionalized MWNT-doped thermoplastic polyurethane nanocomposites for aerospace coating applications. Macromol Mater Eng 295:838–845CrossRefGoogle Scholar
  18. 18.
    Meng Q, Hu J, Zhu Y (2007) Shape-memory polyurethane/multi-walled carbon nanotube fibers. J Appl Polym Sci 106:837–848CrossRefGoogle Scholar
  19. 19.
    Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416CrossRefGoogle Scholar
  20. 20.
    Bandarian M, Shojaei A, Rashidi AM (2011) Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Intern 60:475–482CrossRefGoogle Scholar
  21. 21.
    Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Intern 58:412–417CrossRefGoogle Scholar
  22. 22.
    McClory C, McNally T, Brennan GP, Erskine J (2007) Thermosetting polyurethane multiwalled carbon nanotube composites. J Appl Polym Sci 105:1003–1011CrossRefGoogle Scholar
  23. 23.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652CrossRefGoogle Scholar
  24. 24.
    Wang ZW, Shirley MD, Meikle ST, Whitby RLD, Mikhalovsky SV (2009) The surface acidity of acid oxidized multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47:73–79CrossRefGoogle Scholar
  25. 25.
    Wang Z, Korobeinyk A, Whitby RLD, Meikle ST, Mikhalovsky SV, Acquah SFA, Kroto HW (2010) Direct confirmation that carbon nanotubes still react covalently after removal of acid-oxidative lattice fragments. Carbon 48:916–918CrossRefGoogle Scholar
  26. 26.
    Karabanova LV, Whitby RLD, Korobeinyk A, Bondaruk O, Salvage JP, Lloyd AW, Mikhalovsky SV (2012) Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp Sci Technol 72:865–872CrossRefGoogle Scholar
  27. 27.
    Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149CrossRefGoogle Scholar
  28. 28.
    Goertzen SL, Theriault KD, Oickle AM, Tarasuk AC, Andreas HA (2010) Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48:1252–1261CrossRefGoogle Scholar
  29. 29.
    Karabanova LV, Boiteux G, Gain O, Seytre G, Sergeeva LM, Lutsyk ED (2004) Miscibility and thermal and dynamic mechanical behavior of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym Intern 53:2051–2056CrossRefGoogle Scholar
  30. 30.
    Bershtein VA, Yakushev PN (2010) Laser-interferometric creep rate spectroscopy of polymers. Adv Polym Sci 230:73–219CrossRefGoogle Scholar
  31. 31.
    Shilov VV, Karabanova LV, David L, Boiteux G, Seytre G, Gomza YP, Nesin S, Sergeeva LM, Lutsyk ED, Svyatina AV (2005) Structure peculiarities of semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxyethyl methacrylate). Polym J (Russ) 27:54–62Google Scholar
  32. 32.
    Karabanova LV, Boiteux G, Seytre G, Stevenson I, Gain O, Shady C, Lutsyk ED, Svyatyna A (2009) Semi-interpenetrating polymer networks based on polyurethane and poly(2-hydroxyethyl methacrylate): dielectric study of relaxation behavior. J Non-Cryst Solids 355:1453–1460CrossRefGoogle Scholar
  33. 33.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147CrossRefGoogle Scholar
  34. 34.
    Sidebottom DL, Bergman R, Börjesson L, Torell LM (1993) Scaling behaviour in poly(propylene glycol) in the glass transition range. Progr Colloid Polym Sci 91:43–45CrossRefGoogle Scholar
  35. 35.
    Karabanova LV, Sergeeva LM, Svyatyna AV, Yakushev PN, Egorova LM, Ryzhov VA, Bershtein VA (2007) Heterogeneity of glass transition dynamics in polyurethane-poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks. J Polym Sci, Part B: Polym Phys 45:963–975CrossRefGoogle Scholar
  36. 36.
    Karabanova LV, Bershtein VA, Sukhanova TE, Yakushev PN, Egorova LM, Lutsyk ED, Svyatyna AV, Vylegzhanina ME (2008) 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: composition-nanostructure-segmental dynamics-elastic properties relationships. J Polym Sci, Part B: Polym Phys 46:1696–1712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lyudmyla V. Karabanova
    • 1
  • Raymond L. D. Whitby
    • 2
  • Vladimir A. Bershtein
    • 3
  • Alina V. Korobeinyk
    • 2
  • Pavel N. Yakushev
    • 3
  • Oksana M. Bondaruk
    • 1
  • Andrew W. Lloyd
    • 2
  • Sergey V. Mikhalovsky
    • 2
  1. 1.Institute of Macromolecular ChemistryNASKyivUkraine
  2. 2.Nanoscience and Nanotechnology Group, Faculty of Science and EngineeringUniversity of BrightonBrightonUK
  3. 3.Ioffe Physical-Technical InstituteRASSt.-PetersburgRussia

Personalised recommendations