Colloid and Polymer Science

, Volume 290, Issue 15, pp 1567–1573 | Cite as

Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

  • Gun-hee Moon
  • Yongsoon Shin
  • Bruce W. Arey
  • Chongmin Wang
  • Gregory J. Exarhos
  • Wonyong Choi
  • Jun Liu
Short Communication


An eco-friendly and economical method for the formation of highly uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 °C is reported. Until now, the effect of an extra pressure which is built up by dissolved CO2 on the generation of carbon spheres under hydrothermal condition less than 250 °C hasn’t been demonstrated yet. In general, a complicated reactor is required to put overpressure on the autoclave vessel by adding inert gases, whereas the manipulation of a carbonated beverage including fructose and glucose molecules as precursors is favorable to design a simple experimental set-up and to investigate the effect of extra pressure on the growth of carbon spheres under mild hydrothermal condition. Herein, CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In addition, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate hydroxymethylfurfural molecules.


Carbon spheres Hydrothermal carbonization Carbonated beverage Carbon dioxide Pressure 

Supplementary material

396_2012_2729_MOESM1_ESM.pdf (485 kb)
ESM 1(PDF 485 kb)


  1. 1.
    Ehrburger P, Vix-Guterl C (2001) Surface properties of carbons for advanced carbon-based composites. In: Rand R, Appleyard SP, Yardim MF (eds) Design and control of structure of advanced carbon materials for enhanced performance. Kluwer, Boston, pp 85–124CrossRefGoogle Scholar
  2. 2.
    Deshmukh AA, Mhlanga SD, Coville NJ (2010) Carbon spheres. Mater Sci Eng R 70:1–28CrossRefGoogle Scholar
  3. 3.
    Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828CrossRefGoogle Scholar
  4. 4.
    Hu B, Yu SH, Wang K, Liu L, Xu XW (2008) Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Trans 5414–5423Google Scholar
  5. 5.
    Wang N, Gao Y, Gong J, Ma X, Zhang X, Guo Y, Qu L (2008) Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres. Eur J Inorg Chem 2008:3827–3832CrossRefGoogle Scholar
  6. 6.
    Ding S, Zhang C, Qu X, Liu J, Lu Y, Yang Z (2008) Porous carbon and carbon composite hollow spheres. Colloid Polym Sci 286:1093–1096CrossRefGoogle Scholar
  7. 7.
    Inagaki M, Park KC, Endo M (2010) Carbonization under pressure. New Carbon Mater 25:409–420CrossRefGoogle Scholar
  8. 8.
    Cao L, Chen L, Jiao J, Zhang S, Gao W (2007) Synthesis of cross-linked poly(N-isopropylacrylamide) microparticles in supercritical carbon dioxide. Colloid Polym Sci 285:1229–1236CrossRefGoogle Scholar
  9. 9.
    Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stöber Method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50:5947–5951CrossRefGoogle Scholar
  10. 10.
    Yao C, Shin Y, Wang LQ, Windisch CF, Samuels WD et al (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111:15141–15145CrossRefGoogle Scholar
  11. 11.
    Shin Y, Wang LQ, Bae IT, Arey BW, Exarhos GJ (2008) Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J Phys Chem C 112:14236–14240CrossRefGoogle Scholar
  12. 12.
    Digman B, Kim DS (2008) Review: alternative energy from food processing wastes. Environ Prog 27:524–537CrossRefGoogle Scholar
  13. 13.
    Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601CrossRefGoogle Scholar
  14. 14.
    Wagner W, Pruss A (1993) International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990. J Phys Chem Ref Data 22:783–788CrossRefGoogle Scholar
  15. 15.
    Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:257–271CrossRefGoogle Scholar
  16. 16.
    Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 19:1280–1283CrossRefGoogle Scholar
  17. 17.
    Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, Konig B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11:1948–1954CrossRefGoogle Scholar
  18. 18.
    Araujo-Andrade C, Ruiz F, Martinez-Mendoza JR, Torrpmes H (2005) Infrared and Raman spectra, conformational stability, ab initio calculations of structure, and vibrational assignment of α and β glucose. J Mol Struct (THEOCHEM) 714:143–146CrossRefGoogle Scholar
  19. 19.
    Baccile N, Laurent G, Babonneau F, Fayon F, Titirici MM, Antonietti M (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. J Phys Chem C 113:9644–9654CrossRefGoogle Scholar
  20. 20.
    Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289CrossRefGoogle Scholar
  21. 21.
    Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons Ltd, Chichester, pp 10815–10837Google Scholar
  22. 22.
    Wei L, Yan N, Chen Q (2011) Conversion poly(ethylene terephthalate) waste into carbon microspheres in a supercritical CO2 system. Environ Sci Technol 45:534–539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Gun-hee Moon
    • 1
    • 2
  • Yongsoon Shin
    • 1
  • Bruce W. Arey
    • 1
  • Chongmin Wang
    • 1
  • Gregory J. Exarhos
    • 1
  • Wonyong Choi
    • 2
  • Jun Liu
    • 1
  1. 1.Chemicals and Materials Science DivisionPacific Northwest National Laboratory (PNNL)RichlandUSA
  2. 2.Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea

Personalised recommendations