Colloid and Polymer Science

, Volume 291, Issue 3, pp 469–481 | Cite as

Structural analysis of colloidal MnO x composites

  • Frank Polzer
  • Elizabeta Holub-Krappe
  • Hermann Rossner
  • Alexei Erko
  • Holm Kirmse
  • Felix Plamper
  • Alexander Schmalz
  • Axel H. E. Müller
  • Matthias Ballauff
Original Contribution


We report on the detailed structure of MnO x nanoparticles (MnO x NP) which are either stabilized by cationic spherical polyelectrolyte brushes or by star-shaped cationic polyelectrolyte chains. In both cases, the polycation is composed of 2-(trimethylammonium)ethyl methacrylate chloride (TMAEMC). The analysis by transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryoTEM), and powder X-ray diffraction leads to the conclusion that the MnO x nanoparticles in aqueous dispersed state are composed of only a few or even single lamellae of c-disordered potassium birnessite (birnessite). Using star-shaped pTMAEMC homopolymer for the synthesis of composite particles, we obtain MnO x NP with an average diameter of about 5 nm. MnO x NP immobilized on cationic spherical polyelectrolyte brush have a length of about 20 nm and a width of 1.6 nm. Comparison of the extended X-ray absorption fine structure (EXAFS) spectra of the MnO x composites with reference spectra leads to the conclusion that all materials include c-disordered birnessite-type nanoparticles. A comparison of the energy shift of the Mn K-edge absorption peak of the X-ray absorption near-edge structure spectra of different manganese oxide reference materials with the different MnO x NP revealed an average oxidation state of about 3.5–3.7 for synthesized compounds. No distinct structural difference is found when comparing the dried samples to samples dispersed in water. A comparison of the EXAFS data of the birnessite nanoparticles with the crystal structure of macroscopic systems showed a compression along the c direction accompanied by a slight elongation within the ab plane of the layered material.


MnOx Nanoparticles Colloid EXAFS 



We thank the Deutsche Forschungsgemeinschaft and the Henkel AG & Co. KGaA for the financial support. This work has been a part of the dissertation of Frank Polzer.

Supplementary material

396_2012_2725_MOESM1_ESM.pdf (525 kb)
ESM 1 (PDF 524 kb)


  1. 1.
    Suib SL (2008) J Mater Chem 18:1623–1631CrossRefGoogle Scholar
  2. 2.
    Wang X, Li Y (2006) Pure Appl Chem 78:1–64CrossRefGoogle Scholar
  3. 3.
    Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) Chem Mater 10:2619–2628CrossRefGoogle Scholar
  4. 4.
    Suib SL (2008) Acc Chem Res 41:479–487CrossRefGoogle Scholar
  5. 5.
    Cai J, Liu J, Suib SL (1998) Chem Mater 10:2619–2628CrossRefGoogle Scholar
  6. 6.
    Aronson BJ, Kinser AK, Passerini S, Smyrl WH, Stein A (1999) Chem Mater 11:949–957CrossRefGoogle Scholar
  7. 7.
    Shen XF, Ding YS, Liu J, Cai J, Laubernds K, Zerger RP, Vasiliev A, Aindow M, Suib SL (2005) Adv Mater 17:805–809CrossRefGoogle Scholar
  8. 8.
    Sakai N, Ebina Y, Takada K, Sasaki TJ (2005) Phys Chem B 109:9651–9655CrossRefGoogle Scholar
  9. 9.
    Yang DS, Wang MK (2001) Chem Mater 13:2589–2594CrossRefGoogle Scholar
  10. 10.
    Zhu S, Zhou H, Hibino M, Honma I, Ichihara M (2005) Adv Funct Mater 15:381–386CrossRefGoogle Scholar
  11. 11.
    Gaillot AC, Flot D, Drits VA, Manceau A, Burghammer M, Lanson B (2003) Chem Mater 15:4666–4678CrossRefGoogle Scholar
  12. 12.
    Feng Qu, Kanoh H, Ooi KJ (1999) Mater Chem 9:319–333CrossRefGoogle Scholar
  13. 13.
    Post JE, Veblen DR (1990) Am Mineral 75:477–489Google Scholar
  14. 14.
    Drits VA, Silvester EJ, Gorshkov AI, Manceau A (2002) Am Mineral 87:1631–1645Google Scholar
  15. 15.
    Ching S, Petrovay DJ, Jorgensen ML, Suib SL (1997) Inorg Chem 36:883–890CrossRefGoogle Scholar
  16. 16.
    Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Chem Mater 7:1226–1232CrossRefGoogle Scholar
  17. 17.
    Lanson B, Drits VA, Gaillot AC, Silvester E, Plancon A, Manceau (2002) Am Mineral 87:1631–1645Google Scholar
  18. 18.
    Liu ZH, Ooi K, Kanoh H, Tang WP, Tomida T (2000) Langmuir 16:4154–4164CrossRefGoogle Scholar
  19. 19.
    Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) J Am Chem Soc 130:15938–15943CrossRefGoogle Scholar
  20. 20.
    Gao Q, Giraldo O, Tong W, Suib SL (2001) Chem Mater 13:778–786CrossRefGoogle Scholar
  21. 21.
    Omomo Y, Sasaki T, Wang L, Watanabe M (2003) J Am Chem Soc 125:3568–3575CrossRefGoogle Scholar
  22. 22.
    Oaki Y, Imai H (2007) Angew Chem Int Ed 46:4951–4955CrossRefGoogle Scholar
  23. 23.
    Croguennec L, Deniard P, Brec R, Lecerf A (1997) J Mater Chem 7:511–516CrossRefGoogle Scholar
  24. 24.
    Hara D, Shirakawa J, Ikuta H, Uchimoto Y, Wakihara M, Miyanaga T, Watanabe I (2003) J Mater Chem 13:897–903CrossRefGoogle Scholar
  25. 25.
    Petkov V, Ren Y, Saratovsky I, Pastén P, Gurr SJ, Hayward MA, Poeppelmeier KR, Gaillard JF (2009) ACS Nano 3:441–445CrossRefGoogle Scholar
  26. 26.
    Kobayashi S, Kottegoda IRM, Uchimoto Y, Wakihara M (2004) J Mater Chem 14:1843–1848CrossRefGoogle Scholar
  27. 27.
    Brock SL, Sanabria M, Urban V, Thiyagarajan P, Potter DI, Suib SL (2001) J Phys Chem B 105:5404–5410CrossRefGoogle Scholar
  28. 28.
    Silvester E, Manceau A, Drits VA (1997) Am Mineral 82:962–978Google Scholar
  29. 29.
    Gaillot AC, Drits VA, Manceau A, Lanson B (2007) Microporous Mesoporous Mater 98:267–282CrossRefGoogle Scholar
  30. 30.
    Fukuda K, Nakai I, Ebina Y, Tananka M, Mori T, Sasaki T (2006) J Phys Chem B 110:17070–17075CrossRefGoogle Scholar
  31. 31.
    Saratovsky I, Wightman PG, Pastén PA, Gaillard JF, Poeppelmeier KR (2006) J Am Chem Soc 128:11188–11198CrossRefGoogle Scholar
  32. 32.
    Grangeon S, Lanson B, Miyata N, Tani Y, Manceau A (2010) Am Mineral 95:1608–1616CrossRefGoogle Scholar
  33. 33.
    Ressler T, Brock SL, Wong J, Suib SL (1999) J Phys Chem B 103:6407–6420CrossRefGoogle Scholar
  34. 34.
    Polzer F, Kunz DA, Breu J, Ballauff M (2010) Chem Mater 22:2916–2922CrossRefGoogle Scholar
  35. 35.
    Sharma G, Ballauff M (2004) Macromol Rapid Commun 25:547–557CrossRefGoogle Scholar
  36. 36.
    Plamper FA, Schmalz A, Penott-Chang E, Drechsler M, Jusufi A, Ballauff M, Müller AHE (2007) Macromolecules 40:5689–5697CrossRefGoogle Scholar
  37. 37.
    Qiu J, Charleux B, Matyjaszewski K (2001) Prog Polym Sci 26:2083–2134CrossRefGoogle Scholar
  38. 38.
    Sala T, Sargent MVJ (1978) J Chem Soc Chem Commun 31:253–254CrossRefGoogle Scholar
  39. 39.
    Brock SL, Sanabria M, Urban V, Thiyagarajan P, Potter DI, Suib SL (1999) J Phys Chem B 103:7416–7428CrossRefGoogle Scholar
  40. 40.
    McKenzie RM (1978) Mineral Mag 38:493–502CrossRefGoogle Scholar
  41. 41.
    Kim SH, Kim SJ, Oh SM (1999) Chem Mater 11:557–563CrossRefGoogle Scholar
  42. 42.
    Villalobos M, Toner B, Bargar J, Sposito G (2003) Geochim Cosmochim Acta 67:2649–2662CrossRefGoogle Scholar
  43. 43.
    Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Drechsler M, Ballauff M (2009) Langmuir 25:7862–7871CrossRefGoogle Scholar
  44. 44.
    Erko A, Packe I, Hellwig C, Fieber-Erdmann M, Pawlitzki O, Veldkamp M, Gudat W (2000) AIP Conference Proc 521:415–418CrossRefGoogle Scholar
  45. 45.
    Erko A, Packe I, Gudat W, Abrosimov N, Firsov A (2000) SPIE Rev 4145:122–128CrossRefGoogle Scholar
  46. 46.
    Newville M, Livins P, Yacoby Y, Stern EA, Rehr JJ (1993) Phys Rev B 47:14126–14131CrossRefGoogle Scholar
  47. 47.
    Newville M, Livins P, Yacoby Y, Rehr JJ, Stern EA (1993) Jpn J Appl Phys Part 1(32):125–127Google Scholar
  48. 48.
    Ravel B, Newville M, Cross JO, Bouldin CE (1995) Physica B 209:145–147CrossRefGoogle Scholar
  49. 49.
    Kelly SD, Hesterberg D, Ravel B (2008) Part 5 -Mineralogical methods in Ulery AL and Drees LR (Eds). Analysis of soils and minerals using X-ray absorption spectroscopy Methods of soil analysis Soil Science Society of America, Madison, WI, pp 367–463Google Scholar
  50. 50.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  51. 51.
    Zabinsky SI, Rehr JJ, Ankudinov A, Albers R, Eller MJ (1995) Phys Rev B 52:2995–3009CrossRefGoogle Scholar
  52. 52.
    Schrinner M, Haupt B, Wittemann A (2008) Chem Eng J 144:138–144CrossRefGoogle Scholar
  53. 53.
    Grangeon S, Lanson B, Lanson M, Manceau A (2008) Mineral Mag 72:1279–1291CrossRefGoogle Scholar
  54. 54.
    Giovanelli R (1980) Miner Deposita (Berl) 15:251–253Google Scholar
  55. 55.
    Breu J, Seidl W, Stoll AZ (2003) Anorg Allg Chem 629:503–515CrossRefGoogle Scholar
  56. 56.
    Brunelli M, Lanzara A, Saini NL, Bianconi A, Valletta A, Radaelli PG (1997) J Supercond Chem B 10:315–317CrossRefGoogle Scholar
  57. 57.
    Belli M, Scafati A, Bianconi A, Mobilio S, Paladino L, Reale A, Buratini E (1980) Solid State Commun 35:355–361CrossRefGoogle Scholar
  58. 58.
    Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, p 673Google Scholar
  59. 59.
    Manceau A, Combes JM (1988) Phys Chem Miner 15:283–295CrossRefGoogle Scholar
  60. 60.
    Manceau A, Gorshkov AI, Drits VA (1992) Am Mineral 77:1133–1143Google Scholar
  61. 61.
    Ma Y, Luo J, Suib SL (1999) Chem Mater 11:1972–1979CrossRefGoogle Scholar
  62. 62.
    The International Battery Material Association (1989) Handbook of manganese dioxide, battery grade. Glover D, Schumm B Jr, Kozowa A (eds). The International Battery Material Association, Strongsville. pp 25–32Google Scholar
  63. 63.
    Manceau A, Gorshkov AI, Drits VA (1992) Am Mineral 77:1144–1157Google Scholar
  64. 64.
    Manceau A, Gorshkov AI, Drits VA (1988) Phys Chem Miner 15:283–295CrossRefGoogle Scholar
  65. 65.
    Lee PA, Pendry JB (1975) Phys Rev B 11:2795–2811CrossRefGoogle Scholar
  66. 66.
    Teo BK (1981) J Am Chem Soc 103:3990–4001CrossRefGoogle Scholar
  67. 67.
    Rechav B, Sicron N, Yacoby Y, Ravel B, Newville M, Stern EA (1993) Physica C 209:55–58CrossRefGoogle Scholar
  68. 68.
    Krappe HJ, Rossner HH (2009) Phys Scr 79:048302CrossRefGoogle Scholar
  69. 69.
    Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-ray absorption. Wiley, New York, pp 3–52Google Scholar
  70. 70.
    Polzer F, Wunder S, Lu Y, Ballauff M (2012) J Catal 289:80–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Frank Polzer
    • 1
    • 2
  • Elizabeta Holub-Krappe
    • 1
  • Hermann Rossner
    • 1
  • Alexei Erko
    • 1
  • Holm Kirmse
    • 2
  • Felix Plamper
    • 3
  • Alexander Schmalz
    • 4
  • Axel H. E. Müller
    • 4
  • Matthias Ballauff
    • 1
    • 2
  1. 1.Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  2. 2.Department of PhysicsHumboldt University BerlinBerlinGermany
  3. 3.Physical Chemistry IIRWTH Aachen UniversityAachenGermany
  4. 4.Macromolecular Chemistry IIUniversity of BayreuthBayreuthGermany

Personalised recommendations