Advertisement

Colloid and Polymer Science

, Volume 290, Issue 16, pp 1609–1616 | Cite as

Effects of Hofmeister anions on the flocculation behavior of temperature-responsive poly(N-isopropylacrylamide) microgels

  • Shirin Fanaian
  • Nodar Al-Manasir
  • Kaizheng Zhu
  • Anna-Lena Kjøniksen
  • Bo NyströmEmail author
Original Contribution

Abstract

Effects of some sodium salts (NaCl, NaClO3, and NaSCN) in the Hofmeister series on deswelling and temperature-induced aggregation behavior of microgels of poly(N-isopropylacrylamide) (PNIPAAM) and PNIPAAM-co-PAA with attached poly(acrylic acid) moieties were investigated with the aid of turbidimetry and dynamic light scattering. Addition of salt in the concentration range 0.1–0.5 M generated aggregation of the PNIPAAM microgel particles at elevated temperatures, but it was no distinct difference between chaotropic and kosmotropic anions. In contrast, the flocculation behavior at high temperatures for PNIPAAM-co-PAA revealed a prominent influence of salinity and type of anion on the formation of aggregates. The aggregation transition was shifted to the highest temperature for the most chaotropic anion (SCN), and the aggregation transition at the same salt concentration is consistent with the typical Hofmeister series. The turbidity results from the PNIPAAM-co-PAA microgels disclosed a two-step transition for the considered anions, and both a low and high temperature change in the turbidity data was observed. The high-temperature transition followed the Hofmeister series.

Keywords

Temperature-responsive aggregation Microgels Salt effect Hofmeister series PNIPAAM Turbidimetry Dynamic light scattering 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the Norwegian Research Council for the PETROMAKS project 30881/S60 and VISTA for the project 6506.

References

  1. 1.
    Von Hippel PH, Schleich T (1969) Acc Chem Res 2:257CrossRefGoogle Scholar
  2. 2.
    Collins KD, Washabaugh MW (1985) Q Rev Biophys 18:323CrossRefGoogle Scholar
  3. 3.
    Kunz W, Lo Nostro P, Ninham BW (2004) Curr Opin Colloid Interface Sci 9:1CrossRefGoogle Scholar
  4. 4.
    Zhang YJ, Furyk S, Bergbreiter DE, Cremer PS (2005) J Am Chem Soc 127:14505CrossRefGoogle Scholar
  5. 5.
    Bauduin P, Nohmie F, Touraud D, Neueder R, Kunz W, Ninham BW (2006) J Mol Liq 123:14CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Cremer PS (2006) Curr Opin Chem Biology 10:658CrossRefGoogle Scholar
  7. 7.
    Hofmeister F (1888) Arch Exp Pathol Pharmakol 24:247CrossRefGoogle Scholar
  8. 8.
    Kunz W, Henle J, Ninham BW (2004) Curr Opin Colloid Interface Sci 9:19CrossRefGoogle Scholar
  9. 9.
    Tiktopulo EI, Uversky VN, Lushchik VB, Klenin SI, Bychkova VE, Ptitsyn OB (1995) Macromolecules 28:7519CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Furyk S, Sagle LB, Cho Y, Bergbreiter DE, Cremer PS (2007) J Phys Chem C 111:8916CrossRefGoogle Scholar
  11. 11.
    Cho Y, Zhang Y, Christensen T, Sagle LB, Chilkoti A, Cremer PS (2008) J Phys Chem B 112:13765CrossRefGoogle Scholar
  12. 12.
    Hofmann C, Schönhoff M (2009) Colloi Polym Sci 287:1369CrossRefGoogle Scholar
  13. 13.
    Schild HK (1992) Prog Polym Sci 17:163CrossRefGoogle Scholar
  14. 14.
    Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) J Chem Soc Faraday Trans 92:5013CrossRefGoogle Scholar
  15. 15.
    Daly E, Saunders BR (2000) Langmuir 16:5546CrossRefGoogle Scholar
  16. 16.
    Routh AF, Vincent B (2002) Langmuir 18:5366CrossRefGoogle Scholar
  17. 17.
    Hou Y, Yu C, Liu G, Ngai T, Zhang G (2010) J Phys Chem B 114:3799CrossRefGoogle Scholar
  18. 18.
    López-León T, Bastos-González D, Ortega-Vinuesa JL, Elaissari A (2010) Chem Phys Chem 11:188CrossRefGoogle Scholar
  19. 19.
    Hellweg T, Dewhurst CD, Brueckner E, Kratz K, Eimer W (2000) Colloid Polym Sci 278:972CrossRefGoogle Scholar
  20. 20.
    Al-Manasir N, Zhu K, Kjøniksen A-L, Knudsen KD, Karlsson G, Nyström B (2009) J Phys Chem B 113:11115CrossRefGoogle Scholar
  21. 21.
    Jones CD, Lyon LA (2000) Macromolecules 33:8301CrossRefGoogle Scholar
  22. 22.
    Pelton RH, Chibante P (1986) Coloids Surf 20:247CrossRefGoogle Scholar
  23. 23.
    Pelton R (2000) Adv Colloid Interface Sci 85:1CrossRefGoogle Scholar
  24. 24.
    Siegert AJF (1943) Radiation Laboratory report no. 465. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  25. 25.
    Kjøniksen A-L, Nyström B, Tenhu H (2003) Colloid Surf A: Physicochem Eng Aspect 228:75–83CrossRefGoogle Scholar
  26. 26.
    Kjøniksen A-L, Laukkanen A, Galant C, Knudsen KD, Tenhu H, Nyström B (2005) Macromolecules 38:948–960CrossRefGoogle Scholar
  27. 27.
    Heller W, Pangonis WJ (1957) J Chem Phys 26:498CrossRefGoogle Scholar
  28. 28.
    Lechner MD (2005) J Serb Chem Soc 70:361CrossRefGoogle Scholar
  29. 29.
    López-León T, Elaissari A, Ortega-Vinuesa JL, Bastos-González (2007) Chem Phys Chem 8:148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Shirin Fanaian
    • 1
  • Nodar Al-Manasir
    • 1
  • Kaizheng Zhu
    • 1
  • Anna-Lena Kjøniksen
    • 1
    • 2
  • Bo Nyström
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Department of Pharmaceutics, School of PharmacyUniversity of OsloOsloNorway

Personalised recommendations