Colloid and Polymer Science

, Volume 290, Issue 12, pp 1181–1192 | Cite as

Semi-batch control over functional group distributions in thermoresponsive microgels

  • Paniz Sheikholeslami
  • Christopher M. Ewaschuk
  • Syed Usman Ahmed
  • Benjamin A. Greenlay
  • Todd Hoare
Original Contribution


Thermosensitive poly(N-isopropylacrylamide-co-methacrylic acid) (poly(NIPAM-co-MAA)) microgels were prepared via semi-batch free radical copolymerization in which the functional monomer (methacrylic acid) was continuously fed into the reaction vessel at various speeds. Microgels with the same bulk MAA contents (and thus the same overall compositions) but different radial functional group distributions were produced, with batch copolymerizations resulting in core-localized functional groups, fast-feed semi-batch copolymerizations resulting in near-uniform functional group distributions, and slow-feed semi-batch copolymerizations resulting in shell-localized functional groups. Functional group distributions in the microgels were probed using titration analysis, electrophoresis, and transmission electron microscopy. The induced functional group distributions have particularly significant impacts on the pH-induced swelling and cationic drug binding behavior of the microgels; slower monomer feeds result in increased pH-induced swelling but lower drug binding. This work suggests that continuous semi-batch feed regimes can be used to synthesize thermoresponsive microgels with well-defined internal morphologies if an understanding of the relative copolymerization kinetics of each comonomer relative to NIPAM is achieved.


Microgels Semi-batch polymerization Copolymerization kinetics Poly(N-isopropylacrylamide) Functional group distributions 



The Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for funding. Kevin DeFrance is acknowledged for his assistance in synthesizing the semi-batch microgels.

Supplementary material

396_2012_2642_MOESM1_ESM.pdf (84 kb)
Supplementary Information Excess Gibbs free energy of ionization and degree of ionization versus pH plots are provided for the batch and semi-batch microgels studied as well as gel permeation chromatography traces of supernatant polymers for fast and slow-feed microgels. (PDF 84 kb)


  1. 1.
    Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85(1):1–33CrossRefGoogle Scholar
  2. 2.
    Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc-Faraday Trans 92(24):5013–5016CrossRefGoogle Scholar
  3. 3.
    Tan BH, Ravi P, Tam KC (2006) Synthesis and characterization of novel pH-responsive polyampholyte microgels. Macromol Rapid Commun 27:522–528CrossRefGoogle Scholar
  4. 4.
    Liu R, Milani AH, Saunders JM, Freemont TJ, Saunders BR (2011) Tuning the swelling and mechanical properties of pH-responsive doubly crosslinked microgels using particle composition. Soft Matter 7:9297–9306CrossRefGoogle Scholar
  5. 5.
    Tan BH, Tam KC, Lam YC, Tan CB (2005) Microstructure and rheological properties of pH-responsive core-shell particles. Polymer 46:10066–10076CrossRefGoogle Scholar
  6. 6.
    Pelton RH, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf 20(3):247–256CrossRefGoogle Scholar
  7. 7.
    Lu Y, Ballauff M (2011) Thermosensitive core-shell microgels: from colloidal model systems to nanoreactors. Prog Polym Sci 36:767–792CrossRefGoogle Scholar
  8. 8.
    Lapeyre V, Gosse I, Chevreux S, Ravaine V (2006) Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules 7(12):3356–3363CrossRefGoogle Scholar
  9. 9.
    Hoare T, Pelton R (2008) Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9(2):733–740CrossRefGoogle Scholar
  10. 10.
    Zhao Y, He J, Yan B, Tremblay L (2011) Both core- and shell-cross-linked nanogels: photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir 27(1):436–444CrossRefGoogle Scholar
  11. 11.
    Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Ann Rev Mat Res 36:117–142CrossRefGoogle Scholar
  12. 12.
    Lu Y, Ballauff M (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48(7):1815–1823CrossRefGoogle Scholar
  13. 13.
    Lyon LA, Meng ZY, Singh N, Sorrell CD, John AS (2009) Thermoresponsive microgel-based materials. Chem Soc Rev 38(4):865–874CrossRefGoogle Scholar
  14. 14.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477CrossRefGoogle Scholar
  15. 15.
    Saunders BR, Laajam N, Daly E, Teow S, Hu XH, Stepto R (2009) Microgels: from responsive polymer colloids to biomaterials. Adv Colloid Interface Sci 147–48:251–262CrossRefGoogle Scholar
  16. 16.
    Vinogradov SV (2006) Colloidal microgels in drug delivery applications. Curr Pharm Design 12(36):4703–4712CrossRefGoogle Scholar
  17. 17.
    Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550CrossRefGoogle Scholar
  18. 18.
    Hoare T, Pelton R (2005) Electrophoresis of functionalized microgels: morphological insights. Polymer 46(4):1139–1150CrossRefGoogle Scholar
  19. 19.
    Hoare T, Pelton R (2006) Titrametric characterization of pH-induced phase transitions in functionalized microgels. Langmuir 22(17):7342–7350CrossRefGoogle Scholar
  20. 20.
    Hoare T, Pelton R (2007) Calorimetric analysis of thermal phase transitions in functionalized microgels. J Phys Chem B 111(6):1334–1342CrossRefGoogle Scholar
  21. 21.
    Hoare T, Pelton R (2008) Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 24(3):1005–1012CrossRefGoogle Scholar
  22. 22.
    Sahiner N, Ozay O, Aktas N (2011) 4-Vinylpyridine-based smart nanoparticles with N-isopropylacrylamide, 2-hydroxyethyl methacrylate, acrylic acid, and methacrylic acid for potential biomedical applications. Curr Nanosci 7(3):453–462CrossRefGoogle Scholar
  23. 23.
    Bradley M, Vincent B (2008) Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of an anionic surfactant. Langmuir 24(6):2421–2425CrossRefGoogle Scholar
  24. 24.
    Liu WJ, Huang YM, Liu HL (2007) Preparation and characterization of temperature and pH responsive core-shell microgel. Acta Chim Sinica 65(2):91–94Google Scholar
  25. 25.
    Richtering W, Kleinen J, Klee A (2010) Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption. Langmuir 26(13):11258–11265CrossRefGoogle Scholar
  26. 26.
    Bradley M, Vincent B, Burnett G (2007) Uptake and release of anionic surfactant into and from cationic core-shell microgel particles. Langmuir 23(18):9237–9241CrossRefGoogle Scholar
  27. 27.
    Gan DJ, Lyon LA (2001) Tunable swelling kinetics in core-shell hydrogel nanoparticles. J Am Chem Soc 123(31):7511–7517CrossRefGoogle Scholar
  28. 28.
    Gan DJ, Lyon LA (2003) Fluorescence nonradiative energy transfer analysis of crosslinker heterogeneity in core-shell hydrogel nanoparticles. Anal Chim Acta 496(1–2):53–63CrossRefGoogle Scholar
  29. 29.
    Berndt I, Richtering W (2003) Doubly temperature sensitive core-shell microgels. Macromolecules 36(23):8780–8785CrossRefGoogle Scholar
  30. 30.
    Richtering W, Scherzinger C, Lindner P, Keerl M (2010) Cononsolvency of poly(N,N-diethylacrylamide) (PDEAAM) and poly(N-isopropylacrylamide) (PNIPAM) based microgels in water/methanol mixtures: copolymer vs core-shell microgel. Macromolecules 43(16):6829–6833CrossRefGoogle Scholar
  31. 31.
    Hu ZB, Chi CL, Cai T (2009) Oligo(ethylene glycol)-based thermoresponsive core-shell microgels. Langmuir 25(6):3814–3819CrossRefGoogle Scholar
  32. 32.
    Suzuki D, Yoshida R (2010) Self-oscillating core/shell microgels: effect of a crosslinked nanoshell on autonomous oscillation of the core. Polym J 42(6):501–508CrossRefGoogle Scholar
  33. 33.
    Lyon LA, Suzuki D, McGrath JG, Kawaguchi H (2007) Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C 111(15):5667–5672CrossRefGoogle Scholar
  34. 34.
    Kuckling D, Vo CD, Wohlrab SE (2002) Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking. Langmuir 18(11):4263–4269CrossRefGoogle Scholar
  35. 35.
    Huang YM, Liu WJ, Liu HL, Hu Y (2007) Composite structure of temperature sensitive chitosan microgel and anomalous behavior in alcohol solutions. J Colloid Interface Sci 313(1):117–121CrossRefGoogle Scholar
  36. 36.
    Wang PX, Chen Q, Xu K, Zhang WD, Song CL (2009) Preparation and characterization of poly(N-isopropylacrylamide)/polyvinylamine core-shell microgels. Colloid Polym Sci 287(11):1339–1346CrossRefGoogle Scholar
  37. 37.
    Wu C, Hu TJ, You YZ, Pan CY (2002) The coil-to-globule-to-brush transition of linear thermally sensitive poly(N-isopropylacrylamide) chains grafted on a spherical microgel. J Phys Chem B 106(26):6659–6662CrossRefGoogle Scholar
  38. 38.
    Charleux B, Rieger J, Grazon C, Alaimo D, Jerome C (2009) Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. J Polym Sci Pol Chem 47(9):2373–2390CrossRefGoogle Scholar
  39. 39.
    Nagasaki Y, Oishi M (2007) Synthesis, characterization, and biomedical applications of core-shell-type stimuli-responsive nanogels—nanogel composed of poly[2-(N,N-diethylamino)ethyl methacrylate] core and PEG tethered chains. React Funct Polym 67(11):1311–1329CrossRefGoogle Scholar
  40. 40.
    Thurecht KJ, Zheng Y, Turner W, Zong MM, Irvine DJ, Howdle SM (2011) Biodegradable core-shell materials via RAFT and ROP: characterization and comparison of hyperbranched and microgel particles. Macromolecules 44(6):1347–1354Google Scholar
  41. 41.
    Seiffert S, Thiele J, Abate AR, Weitz DA (2010) Smart microgel capsules from macromolecular precursors. J Am Chem Soc 132(18):6606–6609CrossRefGoogle Scholar
  42. 42.
    Hoare T, McLean D (2006) Kinetic prediction of functional group distributions in thermosensitive microgels. J Phys Chem B 110(41):20327–20336CrossRefGoogle Scholar
  43. 43.
    Hoare T, McLean D (2006) Multi-component kinetic modeling for controlling local compositions in thermosensitive polymers. Macromol Theory Simul 15(8):619–632CrossRefGoogle Scholar
  44. 44.
    Hoare T, Pelton R (2007) Functionalized microgel swelling: comparing theory and experiment. J Phys Chem B 111(41):11895–11906CrossRefGoogle Scholar
  45. 45.
    Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40(3):670–678CrossRefGoogle Scholar
  46. 46.
    Acciaro R, Gilányi T, Varga I (2011) Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution. Langmuir 27(12):7917–7925. doi: 10.1021/la2010387 CrossRefGoogle Scholar
  47. 47.
    Zha LS, Zhang QS, Ma JH, Liang BR (2009) A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process. J Colloid Interf Sci 330(2):330–336CrossRefGoogle Scholar
  48. 48.
    Forcada J, Imaz A, Miranda JI, Ramos J (2008) Evidences of a hydrolysis process in the synthesis of N-vinylcaprolactam-based microgels. Eur Polym J 44(12):4002–4011CrossRefGoogle Scholar
  49. 49.
    Sun GX, Zhang MZ, Xu Y, Lu YM, Ni PH (2009) Synthesis and properties of pH-responsive cationic microgels. Acta Chim Sinica 67(14):1685–1690Google Scholar
  50. 50.
    Ponratnam S, Kapur SL (1977) Reactivity ratios of ionizing monomers in aqueous-solution—copolymerization of acrylic and methacrylic acids with acrylamide. Makromol Chem 178(4):1029–1038CrossRefGoogle Scholar
  51. 51.
    Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  52. 52.
    Ohshima H (1994) Electrophoretic mobility of soft particles. J Colloid Interface Sci 163(2):474–483CrossRefGoogle Scholar
  53. 53.
    Elmas B, Tuncel M, Senel S, Patir S, Tuncel A (2007) Hydroxyl functionalized thermosensitive microgels with quadratic crosslinking density distribution. J Colloid Interface Sci 313(1):174–183CrossRefGoogle Scholar
  54. 54.
    Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66(5):051803CrossRefGoogle Scholar
  55. 55.
    Stieger M, Richtering W, Pedersen JS, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J Chem Phys 120(13):6197–6206CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Paniz Sheikholeslami
    • 1
  • Christopher M. Ewaschuk
    • 1
  • Syed Usman Ahmed
    • 1
  • Benjamin A. Greenlay
    • 1
  • Todd Hoare
    • 1
  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations