Colloid and Polymer Science

, Volume 290, Issue 8, pp 689–698 | Cite as

Dynamics and distribution of aromatic model drugs in the phase transition of thermoreversible poly(N-isopropylacrylamide) in solution

Original Contribution

Abstract

Employing differently substituted benzaldehydes as model drugs, their dynamics is investigated under the influence of the coil-to-globule transition of poly(N-isopropylacrylamide), which shows lower critical solution temperature behaviour. Using 1H-NMR spectra, partial incorporation of the model drug into precipitated polymer particles is shown. The fraction of drug, which is rigidly incorporated, is linearly correlated to the shift of the transition temperature, which it induces for the polymer. By 1H-NMR spin relaxation measurements on ethylvanillin, 3,4-dimethoxybenzaldehyde and salicylaldehyde the influence of the polymer transition on the model drug dynamics is detected. The data are interpreted in terms of different sites of drug localisation, i.e. rigidly incorporated, loosely bound and free in the aqueous phase, which are identified by their different dynamics. Drug molecules strongly interacting with the polymer, as documented by a large shift of the transition temperature, exhibit only strongly bound and free sites, while with decreasing drug–polymer interaction drug an additional loosely bound site occurs.

Keywords

Thermoreversible Spin relaxation Lower critical solution temperature Coil-to-globule transition Drug release 

References

  1. 1.
    Schild HG (1992) Poly (N-isopropylacrylamide)—experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  2. 2.
    Winnik FM (1990) Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST. Macromolecules 23:233–242CrossRefGoogle Scholar
  3. 3.
    Bae YH, Okano T, Hsu R, Kim SW (1987) Thermo-sensitive polymers as on–off switches for drug release. Makromol Chem Rapid Commun 8:481–485CrossRefGoogle Scholar
  4. 4.
    Vo CD, Kuckling D, Adler HJP, Schönhoff M (2002) Preparation of thermosensitive nanogels by photo-cross-linking. Colloid Polym Sci 280:400–409CrossRefGoogle Scholar
  5. 5.
    Lynch I, Dawson KA (2004) Release of model compounds from “plum-pudding”-type gels composed of microgel particles randomly dispersed in a gel matrix. J Phys Chem B 108:10893–10898CrossRefGoogle Scholar
  6. 6.
    Wang Q, Zhao Y, Yang Y, Xu H, Yang X (2007) Thermosensitive phase behavior and drug release of in situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci 285:515–521CrossRefGoogle Scholar
  7. 7.
    Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188CrossRefGoogle Scholar
  8. 8.
    Zeng J, Shi K, Zhang Y, Sun X, Deng L, Guo X, Du Z, Zhang B (2008) Synthesis of poly(N-isopropylacrylamide)-b-poly(2-vinylpyridine) block copolymers via RAFT polymerization and micellization behavior in aqueous solution. J Colloid Interface Sci 322:654–659CrossRefGoogle Scholar
  9. 9.
    Zhang ZC, Jin JJ, Bautista F, Lyons LJ, Shariatzadeh N, Sherlock D, Amine K, West R (2004) Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes. Solid State Ionics 170:233–238CrossRefGoogle Scholar
  10. 10.
    Zhang JX, Qiu LY, Wu XL, Zhu KJ (2006) Temperature-triggered nanosphere formation through self-assembly of amphiphilic polyphosphazene. Macromol Chem Phys 207:1289–1296CrossRefGoogle Scholar
  11. 11.
    Lynch I, de Gregorio P, Dawson KA (2005) Simultaneous release of hydrophobic and cationic solute from thin-film “plum-pudding” gels: a multifunctional platform for surface drug delivery? J Phys Chem B 109:6257–6261CrossRefGoogle Scholar
  12. 12.
    Kosik K, Wilk E, Geissler E, László K (2007) Distribution of phenols in thermoresponsive hydrogels. Macromolecules 40:2141–2147CrossRefGoogle Scholar
  13. 13.
    Dhara D, Chatterji PR (1999) Effect of hydrotropes on the volume phase transition in poly(N-isopropylacrylamide) hydrogel. Langmuir 15:930–935CrossRefGoogle Scholar
  14. 14.
    Coughlan DC, Quilty FP, Corrigan OI (2004) Effect on drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. J Control Release 98:97–114CrossRefGoogle Scholar
  15. 15.
    Coughlan DC, Corrigan OI (2006) Drug–polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. Int J Pharm 313:163–174CrossRefGoogle Scholar
  16. 16.
    Spevacek J (2009) NMR investigations of phase transition in aqueous polymer solutions and gels. Curr Opin Colloid Interface Sci 14:184–191CrossRefGoogle Scholar
  17. 17.
    Andersson M, Maunu SL (2006) Volume phase transition and structure of poly(N-isopropylacrylamide) microgels studied with 1H-NMR spectroscopy in D2O. Colloid Polym Sci 285:293–303CrossRefGoogle Scholar
  18. 18.
    Burba CM, Carter SM, Meyer KJ, Rice CV (2008) Salt effects on poly(N-isopropylacrylamide) phase transition thermodynamics from NMR spectroscopy. J Phys Chem B 112:10399–10404CrossRefGoogle Scholar
  19. 19.
    Tokuhiro T, Amiya T, Mamada A, Tanaka T (1991) NMR study of poly(N-isopropylacrylymide) gels near phase transition. Macromolecules 24:2936–2943CrossRefGoogle Scholar
  20. 20.
    Badiger MV, Rajamohanan PR, Kulkarni MG, Ganapathy S, Mashelkar RA (1991) Proton MASS-NMR: a new tool to study thermoreversible transition in hydrogels. Macromolecules 24:106–111CrossRefGoogle Scholar
  21. 21.
    Ohta H, Ando I, Fujishige S, Kubota K (1991) Molecular motion and 1H NMR relaxation of aqueous poly(N-isopropylacrylamide) solution under high pressure. J Polym Sci B-Polym Phys 29:963–968CrossRefGoogle Scholar
  22. 22.
    Zeng F, Tong Z, Feng HQ (1997) NMR investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions. Polymer 38:5539–5544CrossRefGoogle Scholar
  23. 23.
    Yushmanov PV, Furó I, Iliopoulos I (2006) Kinetics of demixing and remixing transitions in aqueous solutions of poly(N-isopropylacrylamide): a temperature-jump 1H NMR study. Macromol Chem Phys 207:1972–1979CrossRefGoogle Scholar
  24. 24.
    Starovoytova L, Spěvaček J, Ilavsky M (2005) H-1 NMR study of temperature-induced phase transitions in D2O solutions of poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) mixtures and random copolymers. Polymer 46:677–683CrossRefGoogle Scholar
  25. 25.
    Rusu M, Wohlrab S, Kuckling D, Möhwald H, Schönhoff M (2006) Coil-to-globule transition of PNIPAM graft copolymers with charged side chains: A H-1 and H-2 NMR and spin relaxation study. Macromolecules 39:7358–7363CrossRefGoogle Scholar
  26. 26.
    Schönhoff M, Larsson A, Welzel PB, Kuckling D (2002) Thermoreversible polymers adsorbed to colloidal silica: A H-1 NMR and DSC study of the phase transition in confined geometry. J Phys Chem B 106:7800–7808CrossRefGoogle Scholar
  27. 27.
    Spěváček J (2005) Phase separation in aqueous polymer solutions as studied by NMR methods. Macromol Symp 222:1–13CrossRefGoogle Scholar
  28. 28.
    Hanyková L, Labuta J, Spěvaček J (2006) NMR study of temperature-induced phase separation and polymer–solvent interactions in poly(vinyl methyl ether)/D2O/ethanol solutions. Polymer 47:6107–6116CrossRefGoogle Scholar
  29. 29.
    Hofmann C, Schönhoff M (2009) Do additives shift the LCST of poly(N-isopropylacrylamide) by solvent quality changes or by direct interactions? Colloid Polym Sci 298:1369–1376CrossRefGoogle Scholar
  30. 30.
    Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 63:7512–7515CrossRefGoogle Scholar
  31. 31.
    Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691CrossRefGoogle Scholar
  32. 32.
    Larsson A, Kuckling D, Schönhoff M (2001) 1H NMR of thermoreversible polymers in solution and at interfaces: the influence of charged groups on the phase transition. Colloid Surf A 190:185–192CrossRefGoogle Scholar
  33. 33.
    Van der Beek GP, Stuart MAC, Cosgrove T (1991) Polymer adsorption and desorption studies via H-1-NMR relaxation of the solvent. Langmuir 7:327–334CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Physical ChemistryUniversity of MuensterMünsterGermany
  2. 2.Institute of Physical ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations