Colloid and Polymer Science

, Volume 289, Issue 17–18, pp 1855–1862 | Cite as

Controlled fabrication of organic nanotubes via self-assembly of non-symmetric bis-acylurea

  • Jong-Uk Kim
  • Niko Haberkorn
  • Patrick Theato
  • Rudolf Zentel
Original Contribution


We present novel non-symmetric bis-acylurea organogelators that self-assemble into hollow tubular nanostructures upon cooling in solutions. The bis-acylureas have aliphatic end groups of different lengths divided by a spacer group [−NHCONHCO−(CH2)5−CONHCONH−, C5] with two hydrogen bonding sites. Due to the intermolecular biaxial hydrogen bonding, the molecules crystallize into 2D thin layers at first, and then their wrapping ultimately results in nanotubes. On the contrary, symmetric bis-acylureas form multilayered nanosheets which are stabilized by the van der Waals interaction between the stacked layers. The size and shape of the nanotubes can be controlled by varying the difference of the alkyl chain lengths. When the difference is big, for example, eight methylene units (BuC5DD, butyl (Bu) and dodecyl (DD)), uniform nanotubes of 65-nm mean outer diameter are obtained, while a non-symmetric bis-acylurea with one methylene unit difference (UDC5DD, undecyl (UD)) forms a mixture of nanosheets and nanotubes. Template-assisted formation of nanotubes was successfully performed via gelation in inorganic nanopores. We also synthesized a thiol-functionalized non-symmetric bis-acylurea, HS-UDC5Bu (thiol (HS)), which was used as a tubular template for gold nanoparticles.


Functional nanostructures Self-assembly H bond Nanotubes Gold nanoparticles 



We thank DFG (IRTG1404) for financial support. We also thank the Department of Electron Microscopy at the MPI-P in Mainz for providing support for SEM measurements and P. J. Roth for helpful discussion.

Supplementary material

396_2011_2512_MOESM1_ESM.doc (312 kb)
ESM 1 The experimental details (DOC 312 kb)


  1. 1.
    Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327CrossRefGoogle Scholar
  2. 2.
    Capito RM, Azevedo HS, Velichko YS, Mata A, Stupp SI (2008) Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319(5871):1812–1816CrossRefGoogle Scholar
  3. 3.
    Shao H, Parquette JR (2009) Controllable peptide-dendron self-assembly: interconversion of nanotubes and fibrillar nanostructures. Angew Chem Int Ed 48(14):2525–2528CrossRefGoogle Scholar
  4. 4.
    Lee HY, Nam SR, Hong JI (2007) Microtubule formation using two-component gel system. J Am Chem Soc 129(5):1040–1041CrossRefGoogle Scholar
  5. 5.
    Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nature Rev Cancer 10:194–204CrossRefGoogle Scholar
  6. 6.
    Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712CrossRefGoogle Scholar
  7. 7.
    Kikkawa M, Metlagel Z (2006) A molecular “zipper” for microtubules. Cell 127(7):1302–1304CrossRefGoogle Scholar
  8. 8.
    Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRefGoogle Scholar
  9. 9.
    Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29CrossRefGoogle Scholar
  10. 10.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotube. Chem Rev 106(3):1105–1136CrossRefGoogle Scholar
  11. 11.
    Steinhard M, Wehrspohn RB, Goesele U, Wendorff JH (2004) Nanotubes by template wetting: a modular assembly system. Angew Chem Int Ed 43(11):1334–1344CrossRefGoogle Scholar
  12. 12.
    Shimizu T, Masuda M, Minamikawa H (2005) Supramolecular nanotube architectures based on amphiphilic nolecules. Chem Rev 105(4):1401–1444CrossRefGoogle Scholar
  13. 13.
    Terech P, De Geyer A, Struth B, Talmon Y (2002) Self-assembled monodisperse steroid nanotubes in water. Adv Mater 14(7):4495–498CrossRefGoogle Scholar
  14. 14.
    Diaz N, Simon FX, Schmutz M, Rawiso M, Decher G, Jestin J, Mesini PJ (2005) Self-assembled diamide nanotubes in organic solvents. Angew Chem Int Ed 44(21):3260–3264CrossRefGoogle Scholar
  15. 15.
    Lee E, Kim JK, Lee M (2009) Reversible scrolling of 2D sheets from self-assembly of laterally-grafted amphiphilic rods. Angew Chem Int Ed 48(20):3657–3660CrossRefGoogle Scholar
  16. 16.
    Khanna S, Khan MK, Sundararajan P (2009) Influence of double hydrogen bonds and alkyl chains on the gelation of nonchiral polyurethane model compounds: sheets, eaves trough, tubes and oriented fibers. Langmuir 25(22):13183–13193CrossRefGoogle Scholar
  17. 17.
    Fuhrhop JH, Schnieder P, Boekema E, Helfrich W (1988) Lipid bilayer fibers from diastereomeric and enantiomeric N-octylaldonamides. J Am Chem Soc 110(9):2861–2867CrossRefGoogle Scholar
  18. 18.
    Pakhomov S, Hammer RP, Mishra BK, Thomas BN (2003) Chiral tubule self-assembly from an achiral diynoic lipid. Proc Natl Acad Sci USA 100(6):3040–3042CrossRefGoogle Scholar
  19. 19.
    Davis R, Berger R, Zentel R (2007) Two-dimensional aggregation of organogelators induced by biaxial hydrogen-bonding gives supramolecular nanosheets. Adv Mater 19(22):3878–3881CrossRefGoogle Scholar
  20. 20.
    Mallia VA, George M, Blair DL, Weiss RG (2009) Robust organogels from nitrogen-containing derivatives of (R)-12-hydroxystearic acid as gelators: comparisons with gels from stearic acid derivatives. Langmuir 25(15):8615–8625CrossRefGoogle Scholar
  21. 21.
    Fages F (2005) Systematic design of amide- and urea-type gelators with tailored properties. In: Low molecular mass gelators: topics in current chemistry, chapter 3. Springer, BerlinGoogle Scholar
  22. 22.
    van Esch J, Schoonbeek F, de Loos M, Kooijman H, Spek AL, Kellogg RM, Feringa BL (1999) Cyclic bis-urea compounds as gelators for organic solvents. Chem Eur J 5(3):937–950CrossRefGoogle Scholar
  23. 23.
    Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S (2009) An organogel system can control the stereochemical course of anthracene photodimerization. Chem Commun (16):2100–2102Google Scholar
  24. 24.
    Helfrich W, Prost J (1988) Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys Rev A 38(6):3065–3068CrossRefGoogle Scholar
  25. 25.
    Radzihovsky L, Toner J (1995) A new phase of tethered membranes: tubules. Phys Rev Lett 75(26):4752–4755CrossRefGoogle Scholar
  26. 26.
    Bowick M, Falcioni M, Thorleifsson G (1997) Numerical observation of a tubular phase in anisotropic membranes. Phys Rev Lett 79(5):885–888CrossRefGoogle Scholar
  27. 27.
    Dasgupta D, Kamar Z, Rochas C, Dahmani M, Mesini P, Guenet JM (2010) Design of hybrid networks by sheathing polymer fibrils with self-assembled nanotubules. Soft Matter 6(15):3573–3581CrossRefGoogle Scholar
  28. 28.
    Gao X, Matsui H (2005) Peptide-based nanotubes and their applications in bionanotechnology. Adv Mater 17(17):2037–2050CrossRefGoogle Scholar
  29. 29.
    Cui H, Muraoka T, Gheetham AG, Stupp SI (2009) Self-assembly of giant peptide nanobelts. Nano Lett 9(3):945–951CrossRefGoogle Scholar
  30. 30.
    Freeman RG, Grabar KC et al (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267(5204):1629–1632CrossRefGoogle Scholar
  31. 31.
    Matsui J, Akamatsu K et al (2005) SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal Chem 77(13):4282–4285CrossRefGoogle Scholar
  32. 32.
    Scodeller P, Flexer V et al (2008) Wired-enzyme core–shell Au nanoparticle biosensor. J Am Chem Soc 130(38):12690–12697CrossRefGoogle Scholar
  33. 33.
    Bunz UHF, Rotello VM (2010) Gold nanoparticle–fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew Chem Int Ed 49(19):3268–3279Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für Organische Chemie, Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations