Colloid and Polymer Science

, 289:1597 | Cite as

Thermodynamic and NMR study of aggregation of dodecyltrimethylammonium chloride in aqueous sodium salicylate solution

  • Bojan Šarac
  • Janez Cerkovnik
  • Bernard Ancian
  • Guillaume Mériguet
  • Gaëlle M. Roger
  • Serge Durand-Vidal
  • Marija Bešter-RogačEmail author
Original Contribution


The complex aggregation processes of dodecyltrimethylammonium chloride (DTAC) have been studied in dilute solutions of sodium salicylate (NaSal) by isothermal titration calorimetry and electrical conductivity at temperatures between 278.15 K and 318.15 K. A structural transformation that was dependent on the concentrations of DTAC and NaSal was observed. The micellization process in dilute solutions of DTAC has been subjected to a detailed thermodynamic analysis and shown to occur at considerably lower critical micelle concentrations than reported for DTAC in water and NaCl solutions. Gibbs free energy, Δ mic G o, and entropy, Δ mic S o, were deduced by taking into account the degree of micelle ionization, β, estimated from conductivity measurements. From the temperature dependence of the enthalpy of micellization, Δ mic H o, the heat capacities of micellization, \( {\Delta_{{{\rm mic} }}}c_p^o \) were determined and discussed in terms of the removal of large areas of non-polar surface from contact with water upon micellization. The process is exothermic at all temperatures, indicating, in addition to the hydrophobic effect, the presence of strong interactions between surfactant and salicylate ions. These were confirmed by 1H NMR spectroscopy and diffusion NMR experiments. Salicylate ions not only interact with the headgroups but also insert further into the micelle core. At c NaSal/c DTAC > 2.5, the structural rearrangements occur even at relatively low concentrations of NaSal.


Dodecyltrimethylammonium chloride Sodium salicylate Micellization Thermodynamics Electrical conductivity Isothermal titration calorimetry NMR self-diffusion 



We thank Professor O. Lequin (UPMC Univ. Paris 6 Laboratoire des Biomolécules) for NMR facilities and for helpful discussions, particularly for suggesting to us the big potentiality of HSQC-TOCSY experiment in spectral elucidation. Financial support by the Slovenian Research Agency (grant P1-0201) is gratefully acknowledged. The work was partially supported by bilateral programme BI-FR/09-10-PROTEUS-012 and by COST Action D43.

Supplementary material

396_2011_2480_MOESM1_ESM.doc (799 kb)
ESM 1 (DOC 799 kb)


  1. 1.
    Baar C, Buchner R, Kunz W (2001) Dielectric relaxation of cationic surfactants in aqueous solution. 1. Solvent relaxation. J Phys Chem 105:2906–2913Google Scholar
  2. 2.
    Baranauskienė L, Petrikaitė V, Matulienė J, Matulis D (2009) Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J Mol Sci 10:2752–2762CrossRefGoogle Scholar
  3. 3.
    Barthel J, Feuerlein F, Neueder R, Wachter R (1980) Calibration of conductance cells at various temperatures. J Solution Chem 9:209–219CrossRefGoogle Scholar
  4. 4.
    Barthel J, Wachter R, Gores HJ (1979) Temperature dependence of conductance of electrolytes in nonaqueous solutions. In: Conway BE, Bockris JO’M (eds) Modern aspects of electrochemistry, vol 13. Plenum, New York, pp 1–79Google Scholar
  5. 5.
    Bešter-Rogač M (2009) Nonsteroidal anti-inflammatory drugs ion mobility: a conductometric study of salicylate, naproxen, diclofenac and ibuprofen dilute aqueous solutions. Acta Chim Slov 56:70–77Google Scholar
  6. 6.
    Bešter-Rogač M, Habe D (2006) Modern advances in electrical conductivity measurements of solutions. Acta Chim Slov 53:391–395Google Scholar
  7. 7.
    Cannon MR, Manning RE, Bell JD (1960) Viscosity measurement. Kinetic energy correction and new viscometer. Anal Chem 32:355–358CrossRefGoogle Scholar
  8. 8.
    Chakraborty I, Moulik SP (2007) Self-aggregation of ionic C-10 surfactants having different headgroups with special reference to the behavior of decyltrimethylammonium bromide in different salt environments: a calorimetric study with energetic analysis. J Phys Chem 111:3658–3664Google Scholar
  9. 9.
    Chen LJ, Sheu YH, Li PJ (2004) Heat capacity changes accompanying micelle formation upon burial of hydrophobic tail of nonionic surfactants. J Phys Chem B 108:19096–19098CrossRefGoogle Scholar
  10. 10.
    Dahirel V, Ancian B, Jardat M, Mériguet G, Turq P, Lequin O (2010) What can be learnt from the comparison of multiscale Brownian dynamics simulations, nuclear magnetic resonance and light scattering experiments on charged micelles? Soft Matter 6:517–525CrossRefGoogle Scholar
  11. 11.
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  12. 12.
    Florence AT, Attwood D (1998) Physicochemical principles of pharmacy. Macmillan, LondonGoogle Scholar
  13. 13.
    Gonzales-Perez A, Czapkiewicz J, Del Castillo JL, Rodriguez JR (2004) Micellar properties of tetradecyltrimethylammonium nitrate in aqueous solutions at various temperatures and in water–benzyl alcohol mixtures at 25°C. Colloid Polym Sci 282:1359–1364CrossRefGoogle Scholar
  14. 14.
    Gonzales-Perez A, Del Castillo JL, Czapkiewicz J, Rodriguez JR (2002) Micellization of decyl- and dodecyldimethyl-benzylammonium bromides at various temperatures in aqueous solutions. Colloid Polym Sci 280:503–508CrossRefGoogle Scholar
  15. 15.
    Hoffman H, Ulbricht W (1977) Kinetische und thermodynamische Messungen zur Aggregation von perfluorierten Tensiden. Z Phys Chem NF 106:106–184Google Scholar
  16. 16.
    Imae T, Kohsaka T (1992) Size and electrophoretic mobility of C14TASal micelles in aqueous media. J Phys Chem 96:10030–10035CrossRefGoogle Scholar
  17. 17.
    IUPAC (1980) Recommended reference materials for realization of physicochemical properties. Section: viscosity. Pure Appl Chem 52:2395–2404Google Scholar
  18. 18.
    Johnson CS (1999) Diffusion ordered nuclear magnetic resonance spectroscopy principles and applications. Prog NMR Spectrosc 34:203–256CrossRefGoogle Scholar
  19. 19.
    Joshi JV, Aswal VK, Goyal PS (2007) Effect of sodium salicylate on the structure of micelles of different hydrocarbon chain lengths. Physica B 39:65–71CrossRefGoogle Scholar
  20. 20.
    Kratky O, Leopold H, Stabinger HN (1969) Dichtemessung an Flussigkeiten und Gasen auf 10−6 g/cm3 bei 0,6 cm3 Präparatvolumen. Z Angew Phys 27:273–277Google Scholar
  21. 21.
    Kreke PJ, Magid LJ, Gee JC (1996) 1H and 13C NMR studies of mixed counterion, cetyltrimethylammonium bromide/cetyltrimethylammonium dichlorobenzoate, surfactant solutions: the intercalation of aromatic counterions. Langmuir 12:699–705CrossRefGoogle Scholar
  22. 22.
    Kresheck GC, Hargraves WA (1974) Thermometric titration studies of the effect of head group, chain length, solvent, and temperature on the thermodynamics of micelle formation. J Colloid Interface Sci 48:481–493CrossRefGoogle Scholar
  23. 23.
    Landry JM, Marangoni DG (2008) The effect of added alcohols on the micellization process of sodium 8-phenyloctanoate. Colloid Polym Sci 268:655–662CrossRefGoogle Scholar
  24. 24.
    Longsworth LG (1960) The mutual diffusion of light and heavy water. J Phys Chem 64:1914–1917CrossRefGoogle Scholar
  25. 25.
    Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New YorkCrossRefGoogle Scholar
  26. 26.
    Marangoni DG, Landry JM, Lumsden MD, Berno R (2007) A 1D and 2D NMR investigation of the micelle formation process in 8-phenyloctanoate micelles. Can J Chem 85:202–207CrossRefGoogle Scholar
  27. 27.
    Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45°C. J Phys Chem 77:685–688CrossRefGoogle Scholar
  28. 28.
    Moreira L, Firoozabadi A (2010) Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants. Langmuir 26:15177–15191CrossRefGoogle Scholar
  29. 29.
    Mukim T, Dey J, Das S, Ismail K (2010) Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J Colloid Interface Sci 350:511–515CrossRefGoogle Scholar
  30. 30.
    Onoda-Yamamuro N, Yamamuro O, Tanaka N, Nomura H (2005) NMR and neutron scattering studies on spherical and rod-like micelles of dodecyltrimethylammonium bromide in aqueous sodium salicylate solutions. J Mol Liq 117:139–145CrossRefGoogle Scholar
  31. 31.
    Pereira RFP, Valente AJM, Burrows HD (2010) Thermodynamic analysis of the interaction between trivalent metal ions and sodium dodecyl sulfate: an electrical conductance study. J Mol Liq 156:109–114CrossRefGoogle Scholar
  32. 32.
    Pereira RFP, Valente AJM, Burrows HD, Ramos ML, Ribeiro ACF, Lobo VMM (2009) Flocculation and micellization of sodium dodecyl sulfate solutions in the presence of aluminium nitrate: effect of concentration and temperature. Acta Chim Slov 56:45–52Google Scholar
  33. 33.
    Perger TM, Bešter-Rogač M (2007) Thermodynamics of micelle formation of alkyltrimethylammonium chlorides from high performance electric conductivity measurements. J Colloid Interface Sci 313:288–295CrossRefGoogle Scholar
  34. 34.
    Phillips JN (1955) The energetics of micelle formation. Trans Faraday Soc 51:561–568CrossRefGoogle Scholar
  35. 35.
    Price WS (2009) NMR studies of translational motion: principles and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. 36.
    Rao URK, Monohar C, Valaulikar BS, Iyer RM (1987) Micellar chain model for the origin of the viscoelasticity in dilute surfactant solutions. J Phys Chem 91:3286–3291CrossRefGoogle Scholar
  37. 37.
    Richards FM (1974) The interpretation of protein structures: total volume, group volume distributions and packing density. J Mol Biol 82:1–14CrossRefGoogle Scholar
  38. 38.
    Richards FM (1977) Areas, volumes, packing and protein structure. Annu Rev Biophys Bioenerg 6:151–176CrossRefGoogle Scholar
  39. 39.
    Richards FM (1985) Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol 115:440–464CrossRefGoogle Scholar
  40. 40.
    Roger GM, Durand-Vidal S, Bernard O, Turq P, Perger TM, Bešter-Rogač M (2008) Interpretation of conductivity results from 5 to 45°C on three micellar systems below and above the CMC. J Phys Chem B 112:16529–16538CrossRefGoogle Scholar
  41. 41.
    Sabatino P, Szczygiel A, Sinnaeve D, Hakimhashemi M, Saveyn H, Martins JC, Van der Meeren P (2010) NMR study of the influence of pH on phenol sorption in cationic CTAB micellar solutions. Colloids Surf A Physicochem Eng Aspects 370:42–48CrossRefGoogle Scholar
  42. 42.
    Šarac B, Bešter-Rogač M (2009) Temperature and salt-induced micellization of dodecyltrimethlyammonium chloride in aqueous solution: a thermodynamic study. J Colloid Interface Sci 338:216–221CrossRefGoogle Scholar
  43. 43.
    Seba HB, Thureau P, Ancian B, Thevand A (2006) Combined use of Overhauser spectroscopy and NMR diffusion experiments for mapping the hydration structure of nucleosides: structure and dynamics of uridine in water. Magn Reson Chem 44:1109–1117CrossRefGoogle Scholar
  44. 44.
    Senda N (2002) Winmostar, version 3.803. Accessed 21 January 2011
  45. 45.
    Shikata T, Hirata H, Kotaka T (1990) Micelle formation of detergent molecules in aqueous media. IV. Electrostatic features and phase behaviour of cetyltrimethylammonium bromide: salicylic acid micellar solutions. J Phys Chem 94:3702–3706CrossRefGoogle Scholar
  46. 46.
    Shikata T, Morishima Y (1997) Anisotropic rotation of salicylate anions in threadlike micelles. Langmuir 13:1931–1937CrossRefGoogle Scholar
  47. 47.
    Spolar RS, Livingstone, Record MT Jr (1992) Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry 31:3947–3955CrossRefGoogle Scholar
  48. 48.
    Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  49. 49.
    Valente AJM, Burrows HD, Cruz SMA, Pereira RFP, Ribeiro ACF, Lobo VMM (2008) Aggregation and micellization of sodium dodecyl sulfate in the presence of Ce(III) at different temperatures. A conductometric study. J Colloid Interface Sci 323:141–145CrossRefGoogle Scholar
  50. 50.
    Wang Z, Larson RG (2009) Molecular dynamic simulations of threadlike cetyltrimethylammonium chloride micelles: effects of sodium chloride and sodium salicylate salts. J Phys Chem B 113:13697–13710CrossRefGoogle Scholar
  51. 51.
    Wasylichen RE, Kwak JCT, Gao Z, Verpoorte E, MacDonald JB, Dickson RM (1991) NMR studies of hydrocarbons solubilized in aqueous micellar solutions. Can J Chem 69:822–833CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bojan Šarac
    • 1
  • Janez Cerkovnik
    • 1
  • Bernard Ancian
    • 2
  • Guillaume Mériguet
    • 2
  • Gaëlle M. Roger
    • 3
  • Serge Durand-Vidal
    • 2
  • Marija Bešter-Rogač
    • 1
    Email author
  1. 1.Faculty of Chemistry and Chemical Technology, Aškerčeva 5University of LjubljanaLjubljanaSlovenia
  2. 2.UPMC Univ Paris 6–Laboratoire PECSA (UPMC–CNRS–ESPCI)ParisFrance
  3. 3.ANDRA, Parc de la Croix BlancheChâtenay-Malabry CedexFrance

Personalised recommendations