Advertisement

Colloid and Polymer Science

, Volume 289, Issue 12, pp 1361–1372 | Cite as

Vinylimidazole copolymers: coordination chemistry, solubility, and cross-linking as function of Cu2+ and Zn2+ complexation

  • Markus Andersson
  • Örjan Hansson
  • Lars Öhrström
  • Alexander Idström
  • Magnus Nydén
Original Contribution

Abstract

P(1-VIm-co-MMA) copolymers with 4 or 44 wt.% 1-VIm (abbreviated PVM-4 and PVM-44) where polymerized from 1-VIm (1-vinylimidazole) and methylmethacrylate with azobisisobutyronitrile as initiator and reacted with either Cu2+ or Zn2+. The resulting coordinated polymer complexes were studied using ICP-AES, CP/MAS 13C NMR, conductivity measurements, vibrational spectroscopy (mid-FTIR and far-FTIR), DSC, and EPR. It was established by ICP-AES, CP/MAS 13C NMR, conductivity, mid-FTIR and EPR measurements that the transition metal ions in the complexes were exclusively coordinated by the imidazole ligand. The coordination geometry is square planar with regard to Cu(II) complexes. The strong interaction between the polymeric imidazole ligand and the transition metal ion cross-links the system, resulting in augmentation of T g (the glass transition temperature), especially for copolymers with high relative amount of 1-VIm. The effect of changing metal ion is more complicated and depends on both the strength of the coordinate interaction as well as the coordination number. The solubility of the coordinate polymer complex in conventional solvents is low due to the coordinate cross-links. However, the coordinate polymer complexes are soluble in strongly coordinating solvents such as acetonitrile and dimethylsulfoxide.

Figure

Toc P(1-vinylimidazole-co-methylmethacrylate) copolymers form strong coordinate bonds with the metal ions Cu2+ and Zn2+, subsequently cross-linking the system, which results in a significant augmentation of the glass transition temperature and low solubility in conventional solvents. The complex can be solubilized in strongly coordinating solvents.

Keywords

Coordinated polymer 1-vinylimidazole EPR DSC Glass transition temperature Vibrational spectroscopy 

Notes

Acknowledgments

The main author is grateful to Prof. Krister Holmberg, Prof. Thomas Hjertberg, and Mr. Anders Mårtensson for valuable discussions. Dr. Fredrik Reinholdsson (SKF Sverige AB) is greatly acknowledged for ICP analysis on the complexed polymers. Mr. Atta Abdallah is acknowledged for partial polymerization work. The Foundation for Strategic Environmental Research, MISTRA, is acknowledged for financial support.

Supplementary material

396_2011_2461_MOESM1_ESM.doc (5.4 mb)
ESM 1 A table of detailed solubility analysis, monitored conductivity data during complexation, ICP-AES results, a discussion of the coordinating solvents MeCN and DMSO, vibrational spectra, DSC thermograms of polymers and polymer metal ion complexes as well as a plot of ΔT g vs log(β n L n ). (DOC 5492 kb)

References

  1. 1.
    Belfiore LA, McCurdie MP (1995) Reactive blending via metal-ligand coordination. J Polym Sci B Polym Phys 33(1):105–124CrossRefGoogle Scholar
  2. 2.
    Belfiore LA, McCurdie MP, Das PK (2001) Macromolecule-metal complexes: ligand field stabilization and thermophysical property modification. Polymer 42(25):09995–10006CrossRefGoogle Scholar
  3. 3.
    Kaliyappan T, Kannan P (2000) Co-ordination polymers. Progr Polym Sci 25(3):343–370CrossRefGoogle Scholar
  4. 4.
    Hoogenboom R, Fournier D, Schubert US (2008) Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures. Chem Commun (2):155–162Google Scholar
  5. 5.
    Marin V, Holder E, Hoogenboom R, Schubert US (2007) Functional ruthenium(II)- and iridium(III)-containing polymers for potential electro-optical applications. Chem Soc Rev 36(4):618–635CrossRefGoogle Scholar
  6. 6.
    Mak CSK, Chan WK (2008) Electroluminescence from metal-containing polymers and metal complexes with functional ligands. In: Highly efficient OLEDs with phosphorescent materials, pp 329–362Google Scholar
  7. 7.
    Reimschuessel HK (1982) Polymer-metal halide interactions. Nylon 6-zirconium tetrafluoride system. Colloid Polym Sci 260(9):842–850CrossRefGoogle Scholar
  8. 8.
    Wu KH, Chang TC, Wang YT, Hong YS, Wu TS (2002) Interactions and mobility of copper(II)–imidazole-containing copolymers. Eur Polymer J 39(2):239–245CrossRefGoogle Scholar
  9. 9.
    McCurdie MP, Belfiore LA (1999) Spectroscopic analysis of transition-metal coordination complexes based on poly(4-vinylpyridine) and dichlorotricarbonylruthenium(II). Polymer 40(11):2889–2902CrossRefGoogle Scholar
  10. 10.
    Chen C-W, Chen C-Y, Cioul Z-H (2010) Preparation of monodisperse functional poly(styrene-co-acrylamidoxime) microsphere with chelating amidoxime group. Colloid Polym Sci 288(6):665–672. doi: 10.1007/s00396-010-2183-0 CrossRefGoogle Scholar
  11. 11.
    Challa G, Reedijk J, van Leeuwen PWNM (1996) Macromolecular metal complexes as catalysts with improved stability. Polym Adv Tech 7(8):625–633CrossRefGoogle Scholar
  12. 12.
    Hedin J, Isaksson D, Andersson M, Nyden M (2009) Bi-layer formation of imidazole-modified ethyl(hydroxyethyl)cellulose at a hydrophobic surface as monitored by QCM-D. J Colloid Interface Sci 336(2):388–392CrossRefGoogle Scholar
  13. 13.
    Fant C, Handa P, Nyden M (2006) Complexation chemistry for tuning release from polymer coatings. J Phys Chem B 110(43):21808–21815CrossRefGoogle Scholar
  14. 14.
    Shtykova L, Fant C, Handa P, Larsson A, Berntsson K, Blanck H, Simonsson R, Nyden M, Ingelsten HH (2009) Adsorption of antifouling booster biocides on metal oxide nanoparticles: effect of different metal oxides and solvents. Progr Org Coating 64(1):20–26CrossRefGoogle Scholar
  15. 15.
    Nordstierna L, Abdalla AA, Nordin M, Nyden M (2010) Comparison of release behaviour from microcapsules and microspheres. Progr Org Coating 69(1):49–51. doi: 10.1016/j.porgcoat.2010.05.003 CrossRefGoogle Scholar
  16. 16.
    Atkin R, Davies P, Hardy J, Vincent B (2004) Preparation of aqueous core/polymer shell microcapsules by internal phase separation. Macromolecules 37(21):7979–7985CrossRefGoogle Scholar
  17. 17.
    Dowding PJ, Atkin R, Vincent B, Bouillot P (2005) Oil core/polymer shell microcapsules by internal phase separation from emulsion droplets. II: controlling the release profile of active molecules. Langmuir 21(12):5278–5284CrossRefGoogle Scholar
  18. 18.
    Wassenius H, Nyden M, Vincent B (2003) NMR diffusion studies of translational properties of oil inside core-shell latex particles. J Colloid Interface Sci 264(2):538–547CrossRefGoogle Scholar
  19. 19.
    Sundberg RJ, Martin RB (1974) Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem Rev 74(4):471–517CrossRefGoogle Scholar
  20. 20.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539CrossRefGoogle Scholar
  21. 21.
    Epstein LM, Straub DK, Maricondi C (1967) Moessbauer spectra of some porphyrin complexes with pyridine, piperidine, and imidazole. Inorg Chem 6(9):1720–1724CrossRefGoogle Scholar
  22. 22.
    Rannulu NS, Amunugama R, Yang Z, Rodgers MT (2004) Influence of s and d orbital occupation on the binding of metal ions to imidazole. J Phys Chem A 108(30):6385–6396CrossRefGoogle Scholar
  23. 23.
    Jean Y (2005) Molecular orbitals of transition metal complexes (trans: Marsden C). Oxford University Press, New YorkGoogle Scholar
  24. 24.
    Figgis BN, Hitchman MA (2000) Ligand field theory and its applications. Wiley-VCH, PerthGoogle Scholar
  25. 25.
    Hakansson B, Nyden M, Soderman O (2000) The influence of polymer molecular-weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion experiments. Colloid Polym Sci 278(5):399–405CrossRefGoogle Scholar
  26. 26.
    Perchard C, Novak A (1968) Vibrational spectra of imidazole and 1-methylimidazole complexes with zinc halides, cupric halides, and silver nitrate between 4000 and 500 cm−1. J Chim Phys PCB 65(11–12):1964–1982Google Scholar
  27. 27.
    Lippert JL, Robertson JA, Havens JR, Tan JS (1985) Structural studies of poly(n-vinylimidazole) complexes by infrared and Raman spectroscopy. Macromolecules 18(1):63–67CrossRefGoogle Scholar
  28. 28.
    Perchard C, Novak A (1970) Low-frequency infrared and Raman spectra of ammonia and imidazole complexes of zinc(II) halides. Spectrochim Acta Mol Biomol Spectrosc 26(4):871–881CrossRefGoogle Scholar
  29. 29.
    Reedijk J (1969) Pyrazoles and imidazoles as ligands. II. Coordination compounds of n-methyl imidazole with metal perchlorates and tetrafluoroborates. Inorg Chim Acta 3(4):517–522CrossRefGoogle Scholar
  30. 30.
    Cornilsen BC, Nakamoto K (1974) Metal isotope effect on metal-ligand vibrations. XII. Imidazole complexes with cobalt(II), nickel(II), copper(II), and zinc(II). J Inorg Nucl Chem 36(11):2467–2471CrossRefGoogle Scholar
  31. 31.
    Cowie JMG (1991) Polymers: chemistry and physics of modern materials, 2nd edn. CRC PressGoogle Scholar
  32. 32.
    Scholl HJ, Hüttermann J (1992) ESR and ENDOR of copper(II) complexes with nitrogen donors: probing parameters for prosthetic group modeling of superoxide dismutase. J Phys Chem A 96(24):9684–9691Google Scholar
  33. 33.
    Schwartz HM, Bolton JR, Borg DC (1972) Biological application of electron spin resonance. Copper proteins. Wiley, New YorkGoogle Scholar
  34. 34.
    Chen W, Boven G, Challa G (1991) Studies on immobilized polymer-bound imidazole-copper(II) complexes as catalysts. 3. Immobilization of copper(II) complexes of poly(styrene-co-n-vinylimidazole) by grafting on silica and their catalysis of oxidative coupling of 2,6-disubstituted phenols. Macromolecules 24(14):3982–3987CrossRefGoogle Scholar
  35. 35.
    Pekel N, Güven O (1999) Investigation of complex formation between poly(n-vinyl imidazol) and various metal ions using the molar ratio method. Colloid Polym Sci 227(6):570–573CrossRefGoogle Scholar
  36. 36.
    Pekel N, Savas H, Guven O (2002) Complex formation and adsorption of V3+, Cr3+ and Fe3+ ions with poly(N-vinylimidazole). Colloid Polym Sci 280(1):46–51. doi: 10.1007/s003960200006 CrossRefGoogle Scholar
  37. 37.
    Averill BA, Briggs LR, Chasteen ND, Gilbert TR, Kustin K, Mcleod GC, Penfield KW, Solomon EI, Wilcox DE (1983) Copper, molybdenum, and vanadium in biological systems, vol 52. Structure and bonding. Springer-Verlag, BerlinGoogle Scholar
  38. 38.
    Sato M, Kondo K, Takemoto K (1980) ESR studies on the dimer formation between copper ions in the poly(vinylimidazole)-copper(II) complex. Polym Bull 2(5):305–308CrossRefGoogle Scholar
  39. 39.
    Chiu YS, Wu KH, Chang TC (2003) Miscibility and dynamics of the poly(vinylimidazole-co-methyl methacrylate)-silica hybrids studied by solid-state NMR. Eur Polymer J 39(12):2253–2259. doi: 10.1016/s0014-3057(03)00165-4 CrossRefGoogle Scholar
  40. 40.
    Wu KH, Chang TC, Wang YT, Hong YS, Wu TS (2003) Interactions and mobility of copper(II)-imidazole-containing copolymers. Eur Polymer J 39(2):239–245. doi: 10.1016/s0014-3057(02)00229-x CrossRefGoogle Scholar
  41. 41.
    Crabtree RH (2005) The organometallic chemistry of the transition metals, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  42. 42.
    Colthup NB, Daly LH, Wiberly SE (1991) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, BostonGoogle Scholar
  43. 43.
    Bellamy LJ (1980) The infrared spectra of complex molecules, vol 2.Google Scholar
  44. 44.
    Fadini A, Schnepel F-M (1989) Vibrational spectroscopy: methods and applications (Ellis Horwood series in analytical chemistry). Wiley, HalstedGoogle Scholar
  45. 45.
    Gutmann V (1978) The donor-acceptor approach to molecular interactions. Plenum Press, New YorkGoogle Scholar
  46. 46.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. Part B: applications in coordination, organometallic and bioinorganic chemistry, 6th edn. Wiley, HobokenGoogle Scholar
  47. 47.
    Vänngård T (1972) Copper proteins. In: Swartz HM, Bolton JR, Borg DC (eds) Biological applications of electron spin resonance. Wiley, New YorkGoogle Scholar
  48. 48.
    Bolton JR (1972) Electron spin resonance. In: Schwartz HM, Bolton JR, Borg DC (eds) Biological applications of electron spin resonance. Wiley, New YorkGoogle Scholar
  49. 49.
    Campbell ID, Dwek RA (1984) Electron paramagnetic resonance spectroscopy. In: Elias P (ed) Biological spectroscopy. Biophysical techniques series. The Benjamin/Cummings Publishing Company, Inc., OxfordGoogle Scholar
  50. 50.
    Andersson M, Hedin J, Johansson P, Nordström J, Nyden M (2010) Coordination of imidazoles towards Cu(II) and Zn(II) as studied by NMR relaxometry, EPR, far-FTIR vibrational spectroscopy and ab initio calculations: effect of methyl substitution. J Phys Chem A 114(50):13146–13153CrossRefGoogle Scholar
  51. 51.
    Strong AB (2006) Plastics: materials and processing, 3rd edn. Pearson Education, New JerseyGoogle Scholar
  52. 52.
    Berštein VA, Egorov VM (1994) Differential scanning calorimetry of polymers. Ellis Horwood series in polymer science and technology. Ellis Horwood Limited, ChichesterGoogle Scholar
  53. 53.
    Gutmann V (1968) Coordination chemistry in non-aqueous solutions. Springer-Verlag, WienGoogle Scholar
  54. 54.
    Perchard C, Novak A (1967) Vibrational spectra of n-methylimidazole and of its deuterated derivatives, n-methylimidazole-d3 and n-(methyl-d3)imidazole. Spectrochim Acta A Mol Biomol Spectrosc 23(7):1953–1968CrossRefGoogle Scholar
  55. 55.
    Pouchert CJ (1985) The Aldrich library of FT-IR spectra, vol 1.Google Scholar
  56. 56.
    Dirlikov S, Koenig JL (1979) Infrared spectra of poly(methyl methacrylate) labeled with oxygen-18. Appl Spectrosc 33(6):551–555CrossRefGoogle Scholar
  57. 57.
    Manley TR, Martin CG (1976) The vibrational spectra of methyl, n-butyl and n-octyl methacrylates. Spectrochim Acta A Mol Biomol Spectrosc 32A(2):357–368Google Scholar
  58. 58.
    Willis HA, Zichy MVJI (1969) Laser-Raman and infrared spectra of poly(methyl methacrylate). Polymer 10(9):737–746CrossRefGoogle Scholar
  59. 59.
    Nagai H (1963) Infrared spectra of stereoregular poly(methyl methacrylate). J Appl Polymer Sci 7(5):1697–1714. doi: 10.1002/app.1963.070070512 CrossRefGoogle Scholar
  60. 60.
    Gold DH, Gregor HP (1960) Metal–polyelectrolyte complexes. VIII. The poly(n-vinylimidazole)–copper(II) complex. J Phys Chem 64:1464–1467CrossRefGoogle Scholar
  61. 61.
    Gould DC, Ehrenberg A (1968) Cu2+ in non axial-field: a model for Cu2+ in copper enzymes. Eur J Biochem 5(4):451–455CrossRefGoogle Scholar
  62. 62.
    Sillen LG, Martell EA (1964) Stability constants of metal–ion complexes. (special publication no. 17), 2nd edn.Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Markus Andersson
    • 1
  • Örjan Hansson
    • 2
  • Lars Öhrström
    • 3
  • Alexander Idström
    • 1
  • Magnus Nydén
    • 1
  1. 1.Department of Chemical and Biological Engineering, Applied Surface ChemistryChalmers University of TechnologyGothenburgSweden
  2. 2.Department of ChemistryUniversity of GothenburgGothenburgSweden
  3. 3.Department of Chemical and Biological Engineering, Physical ChemistryChalmers University of TechnologyGothenburgSweden

Personalised recommendations