Skip to main content
Log in

Improvement in hydrophobicity of polyester fabric finished with fluorochemicals via aminolysis and comparing with nano-silica particles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

For the fabrication of the “lotus-type” fibers, a combination of two major requirements, low surface energy and the magnified of the degree of roughness, should be utilized. In this research, the possible surface roughening effect of aminolysis of the polyester fibers was applied to manipulated surface topography while fluorocarbon polymer layer generates low surface energy. The results were compared with the method that created variety of surface roughness by changing the size of the nano-silica particles using the 3M water/oil repellency test, sliding (tilt) angle, microscopy (SEM), decay of hydrophobicity, self-cleaning, and tensile properties. The results indicated the usefulness of the conventional polyester aminolysis process to control surface roughness for enhancement of fabric hydrophobicity with sliding angle as low as 12°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Minghua Yu, Guotuan Gu, Meng WD, Qing FL (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253:3669–3673

    Article  Google Scholar 

  2. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A superhydrophobic and superoleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014

    Article  CAS  Google Scholar 

  3. Gau H, Herminghaus S, Lenz P, Lipowsky R (1999) Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283:46–49

    Article  CAS  Google Scholar 

  4. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078

    Article  CAS  Google Scholar 

  5. Yoon YI, Moon HS, Lyoo WS, Lee TS, Park WH (2009) Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydr Polym 75:246–250

    Article  CAS  Google Scholar 

  6. Zhao N, Xie Q, Kuang X, Wang S, Li Y, Lu X, Tan S, Shen J, Zhang XL, Zhang Y, Xu J, Han CC (2007) A novel ultra-hydrophobic surface: statically non-wetting but dynamically non-sliding. Adv Funct Mater 17:2739–2745

    Article  CAS  Google Scholar 

  7. Bhushan B, Jung YC (2008) Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nano patterned surfaces. J Phys Condens Matter 20:24, 225010

    Google Scholar 

  8. Zhang BT, Liu BL, Deng XB, Cao SS, Hou XH, Chen HL (2008) Fabricating superhydrophobic surfaces by molecular accumulation of polysiloxane on the wool textile finishing. Prog Colloid Polym Sci 286:453–457

    CAS  Google Scholar 

  9. Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    Article  CAS  Google Scholar 

  10. Luzinov I, Brown P, Chumanov G, Minko S (2004). National Textile Centre annual report. Ultrahydrophobic fibers: lotus approach. Project number: C04-CL06

  11. Nishino N, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on -CF3 alignment. Langmuir 15:4321–4323

    Article  CAS  Google Scholar 

  12. Youngblood JP, McCarthy TJ (1999) Ultra-hydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules 32(20):6800–6806

    Article  CAS  Google Scholar 

  13. Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M (2003) Two-level structured self-adaptive surfaces with reversibly tunable properties. J Am Chem Soc 125(13):3896–3900

    Article  CAS  Google Scholar 

  14. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behaviors of water droplets. Langmuir 18:5818–5822

    Article  CAS  Google Scholar 

  15. Morra M, Occhiello E, Grabassi F (1989) Contact angle hysteresis in oxygen plasma treated poly (tetrafluoroethylene). Langmuir 5:872–876

    Article  CAS  Google Scholar 

  16. Veeramasuneni S, Drelich J, Miller JD, Yamauchi G (1997) Hydrophobicity of ion-plated PTFE coatings. Prog Org Coat 15:265–270

    Article  Google Scholar 

  17. Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy TJ (1999) Ultra-hydrophobic and ultra-lyophobic surfaces: some comments and examples. Langmuir 15(10):3395–3399

    Article  CAS  Google Scholar 

  18. Lee HJ, Michielsen S (2007) Preparation of a superhydrophobic rough surface. J Polym Sci B Polym Phys 45:253–261

    Article  CAS  Google Scholar 

  19. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13):5754–5760

    Article  CAS  Google Scholar 

  20. Satoh K, Nakazumi H (2003) Preparation of super-water-repellent fluorinated inorganic-organic coating films on nylon66 by the sol-gel method using microphase separation. J Sol-Gel Sci Technol 27:327–332

    Article  CAS  Google Scholar 

  21. Ma M, Mao Y, Gupta M, Gleason KK, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38:9742–9748

    Article  CAS  Google Scholar 

  22. Ma M, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC (2005) Electrospun poly (Styrene-bloch-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21:5549–5554

    Article  CAS  Google Scholar 

  23. Yang S, Chen S, Tian Y, Feng C, Chen L (2008) Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol–gel process. Chem Mater 20:1233–1235

    Article  CAS  Google Scholar 

  24. National Textile Centre (2003) National Textile Centre annual report. Hybrid polymer nanolayer for surface modification of fibers. Project number: M01-CL03

  25. Xue CH, Jia ST, Zhang J, Tian LQ, Chen HZ, Wang M (2008) Preparation of superhydrophobic surfaces on cotton textiles. Sci Technol Adv Mater 9:1–7

    Google Scholar 

  26. Hoefnagels HF, Wu D, de With G, Ming W (2007) Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir 23(26):13158–13163

    Article  CAS  Google Scholar 

  27. Liu Y, Chen X, Xin JH (2008) Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir Biomim 3:1–8

    CAS  Google Scholar 

  28. Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnONanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904

    Article  CAS  Google Scholar 

  29. Ji YY, Hong YC, Lee SH, Kim SD, Kim SS (2008) Formation of super-hydrophobic and water-repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmospheric pressure plasma polymerization. Surf Coat Technol 202:5663–5667

    Article  CAS  Google Scholar 

  30. Murace H, Fujibayashi T (1997) Characterization of molecular interfaces in hydrophobic systems. Prog Org Coat 31:97–104

    Article  Google Scholar 

  31. 3M (1996) 3M technical data. Test method, water repellency test II—water/alcohol drop test. 3M, St. Paul

  32. 3M (1996) 3M technical data. Test methods, oil repellency test I. 3M, St. Paul

  33. Ramaratnam K, Tsyalkovsky V, Klep V, Luzinov I (2007) Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chem Commun (43):4510–4512

  34. Avny Y, Rebenfeld L (1986) Chemical modification of polyester fiber surface by amination reactions with multifunctional amines. J Appl Polym Sci 32:4009–4025

    Article  CAS  Google Scholar 

  35. Naik SG, Bhat NV (1986) Structural and morphological studies of aminolysed poly (ethylene terephthalate) fibre. Polymer 27:233–240

    Article  CAS  Google Scholar 

  36. Zeronian SH, Collins MJ (1989) Surface modification of polyester by alkaline treatments. Text Prog 20(2):1–34

    Article  Google Scholar 

  37. Gao L, McCarthy TJ (2006) Arteficial lotus leaf prepared using a 1945 patent and a commercial textile. Langmuir 22:5998–6000

    Article  CAS  Google Scholar 

  38. Holme I (2007) Innovative technologies for high performance. Textiles Color Technol 123:59–73

    Article  CAS  Google Scholar 

  39. Popoola VA (1988) Polyester formation: aminolytic degradation and proposed mechanisms of the reaction. J Polym Sci 36:1677–1683

    CAS  Google Scholar 

  40. Glasoe PK, Kleinberg J, Audrieth LF (1939) Acid catalysis in amines, II.Effect of various butylammonium salts on the aminolysis of ethyl phenylacetate in anhydrous n-butylamine. J Am Chem Soc 61:2387

    Article  CAS  Google Scholar 

  41. Hall AJ (1966) Textile Finishing. London, Heywood Books, pp 135–210

    Google Scholar 

  42. Inagaki N, Tasaka S, Mori K (1991) Hydrophobic polymer films plasma-polymerized from CF3/hydrocarbon and hexafluroacetone/ hydrocarbon mixtures. J Appl Polym Sci 43:581–588

    Article  CAS  Google Scholar 

  43. Yasuda T, Okuno T, Yoshida K (1988) A study of surface dynamics of polymers. II. Investigation by plasma surface implantation of fluorine-containing moieties. J Polym Sci B Polym Phys 26:1781–1794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Isfahan University of Technology is gratefully appreciated. We are also greatly indebted to Mr. Tabibi for taking pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Khoddami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazrouei-Sebdani, Z., Khoddami, A. & Mallakpour, S. Improvement in hydrophobicity of polyester fabric finished with fluorochemicals via aminolysis and comparing with nano-silica particles. Colloid Polym Sci 289, 1035–1044 (2011). https://doi.org/10.1007/s00396-011-2426-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2426-8

Keywords

Navigation