Colloid and Polymer Science

, Volume 289, Issue 9, pp 1015–1023 | Cite as

Desiccating colloidal sessile drop: dynamics of shape and concentration

  • Yuri Yu. Tarasevich
  • Irina V. Vodolazskaya
  • Olga P. Isakova
Original Contribution

Abstract

Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics of both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. Computations for the drops of aqueous solution of human serum albumin are presented.

Keywords

Sessile drop Colloid Evaporation Viscosity Phase transition Mooney equation Sol Gel 

References

  1. 1.
    Anderson DM, Davis SH (1995) The spreading of volatile liquid droplets on heated surfaces. Phys Fluids 7(2):248–265CrossRefGoogle Scholar
  2. 2.
    Annarelli CC, Fornazero J, Bert J, Colombani J (2001) Crack patterns in drying protein solution drops. Eur Phys J E 5(5):599–603CrossRefGoogle Scholar
  3. 3.
    Bhardwaj R, Fang X, Attinger D (2009) Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New J Phys 11(7):075,020CrossRefGoogle Scholar
  4. 4.
    Brutin D, Sobac B, Loquet B, Sampol J (2011) Pattern formation in drying drops of blood. J Fluid Mech 667:85–95CrossRefGoogle Scholar
  5. 5.
    Burelbach JP, Bankoff SG, Davis SH (1988) Nonlinear stability of evaporating/condensing liquid films. J Fluid Mech 195:463–494CrossRefGoogle Scholar
  6. 6.
    Chashechkin YD, Bardakov RN (2010) Formation of texture in residue of a drying drop of a multicomponent fluid. Dokl Phys 55(2):68–72CrossRefGoogle Scholar
  7. 7.
    Craster RV, Matar OK, Sefiane K (2009) Pinning, retraction, and terracing of evaporating droplets containing nanoparticles. Langmuir 25(6):3601–3609CrossRefGoogle Scholar
  8. 8.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62(1):756–765CrossRefGoogle Scholar
  9. 9.
    Fischer BJ (2002) Particle convection in an evaporating colloidal droplet. Langmuir 18(1):60–67CrossRefGoogle Scholar
  10. 10.
    Hu H, Larson RG (2005) Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21(9):3963–3971CrossRefGoogle Scholar
  11. 11.
    Jung Y, Kajiya T, Yamaue T, Doi M (2009) Film formation kinetics in the drying process of polymer solution enclosed by bank. Jpn J Appl Phys 48:031,502Google Scholar
  12. 12.
    Kim HS, Park S, Hagelberg F (2010) Computational approach to drying a nanoparticle-suspended liquid droplet. J Nanopart Res 13:59–68CrossRefGoogle Scholar
  13. 13.
    Kistovich AV, Chashechkin YD, Shabalin VV (2010) Formation mechanism of a circumferential roller in a drying biofluid drop. Tech Phys 55:473–478CrossRefGoogle Scholar
  14. 14.
    Koch C (1954) Feinbau und Entstehungsweise von Kristallstrukturen in getrockneten Tropfen hochmolekularsalzhaltiger Flüssigkeiten. Colloid Polym Sci 138:81–86Google Scholar
  15. 15.
    Koch C (1956) Über Austrocknungssprünge. Colloid Polym Sci 145:7–14Google Scholar
  16. 16.
    Lin Z (ed) (2010) Evaporative self-assembly of ordered complex structures. World Scientific, SingaporeGoogle Scholar
  17. 17.
    Lychagov VV, Kalyanov AL, Ryabukho VP (2009) Low-coherence interference microscopy of the internal structure of crystallized blood plasma. Opt Spectrosc 107:859–865CrossRefGoogle Scholar
  18. 18.
    Monkos K (2004) On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim Biophys Acta Protein Proteomics 1700(1):27–34CrossRefGoogle Scholar
  19. 19.
    Monkos K (2005) Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements. J Biol Phys 31:219–232CrossRefGoogle Scholar
  20. 20.
    Okuzono T, Aoki N, Kajiya T, Doi M (2010) Effects of gelation on the evaporation rate of polymer solutions. J Phys Soc Jpn 79(9):094,801CrossRefGoogle Scholar
  21. 21.
    Okuzono T, Kobayashi M, Doi M (2009) Final shape of a drying thin film. Phys Rev E 80(2):021,603CrossRefGoogle Scholar
  22. 22.
    Ozawa K, Nishitani E, Doi M (2005) Modeling of the drying process of liquid droplet to form thin film. Jpn J Appl Phys 44:4229–4234CrossRefGoogle Scholar
  23. 23.
    Parisse F, Allain C (1996) Shape changes of colloidal suspension droplets during drying. J Phys II France 6(7):1111–1119CrossRefGoogle Scholar
  24. 24.
    Pauchard L, Parisse F, Allain C (1999) Influence of salt content on crack patterns formed through colloidal suspension desiccation. Phys Rev E 59(3):3737–3740CrossRefGoogle Scholar
  25. 25.
    Petsi AJ, Kalarakis AN, Burganos VN (2010) Deposition of Brownian particles during evaporation of two-dimensional sessile droplets. Chem Eng Sci 65(10):2978–2989CrossRefGoogle Scholar
  26. 26.
    Popov YO (2005) Evaporative deposition patterns: spatial dimensions of the deposit. Phys Rev E 71(3):036,313CrossRefGoogle Scholar
  27. 27.
    Ragoonanan V, Aksan A (2008) Heterogeneity in desiccated solutions: implications for biostabilization. Biophys J 94(6):2212–2227CrossRefGoogle Scholar
  28. 28.
    Rapis E (2003) Protein and life (self-assembling and symmetry of protein nanostructures). Philobiblion, JerusalemGoogle Scholar
  29. 29.
    Reyes L, Bert J, Fornazero J, Cohen R, Heinrich L (2002) Influence of conformational changes on diffusion properties of bovine serum albumin: a holographic interferometry study. Colloids Surf B Biointerfaces 25(2):99–108CrossRefGoogle Scholar
  30. 30.
    Savina LV (1999) Crystalloscopic structures of blood serum of healthy people and patients. Sov Kuban, KrasnodarGoogle Scholar
  31. 31.
    Shabalin VN, Shatohina SN (2001) Morphology of human biological fluids. Khrizostom, MoscowGoogle Scholar
  32. 32.
    Sole A (1954) Die rhythmischen Kristallisationen im Influenzstagogramm. Colloid Polym Sci 137:15–19Google Scholar
  33. 33.
    Takhistov P, Chang HC (2002) Complex stain morphologies. Ind Eng Chem Res 41(25):6256–6269CrossRefGoogle Scholar
  34. 34.
    Tarasevich YY (2004) Mechanisms and models of the dehydration self-organization in biological fluids. Physics-Uspekhi 47(7):717–728CrossRefGoogle Scholar
  35. 35.
    Tarasevich YY, Isakova OP, Kondukhov VV, Savitskaya AV (2010) Effect of evaporation conditions on the spatial redistribution of components in an evaporating liquid drop on a horizontal solid substrate. Tech Phys 55:636–644CrossRefGoogle Scholar
  36. 36.
    Tarasevich YY, Pravoslavnova DM (2007) Drying of a multicomponent solution drop on a solid substrate: Qualitative analysis. Tech Phys 52:159–163CrossRefGoogle Scholar
  37. 37.
    Tarasevich YY, Pravoslavnova DM (2007) Segregation in desiccated sessile drops of biological fluids. Eur Phys J E 22(4):311–314CrossRefGoogle Scholar
  38. 38.
    Vodolazskaya IV, Tarasevich YY, Isakova OP (2010) The model of phase boundary motion in drying sessile drop of colloidal solution. Nonlinear World 8(3):142–150Google Scholar
  39. 39.
    Widjaja E, Harris M (2008) Particle deposition study during sessile drop evaporation. AIChE J 54(9):2250–2260CrossRefGoogle Scholar
  40. 40.
    Witten TA (2009) Robust fadeout profile of an evaporation stain. EPL (Europhys Lett) 86(6):64,002Google Scholar
  41. 41.
    Yakhno T (2008) Salt-induced protein phase transitions in drying drops. J Colloid Interface Sci 318(2):225–230CrossRefGoogle Scholar
  42. 42.
    Yakhno TA, Yakhno VG (2009) Structural evolution of drying drops of biological fluids. Tech Phys 54:1219–1227CrossRefGoogle Scholar
  43. 43.
    Yakhno TA, Yakhno VG, Sanin AG, Sanina OA, Pelyushenko AS (2004) Protein and salt: spatiotemporal dynamics of events in a drying drop. Tech Phys 49:1055–1063CrossRefGoogle Scholar
  44. 44.
    Zheng R (2009) A study of the evaporative deposition process: pipes and truncated transport dynamics. Eur Phys J E: Soft Matter Biol Phys 29:205–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yuri Yu. Tarasevich
    • 1
  • Irina V. Vodolazskaya
    • 1
  • Olga P. Isakova
    • 1
  1. 1.Astrakhan State UniversityAstrakhanRussia

Personalised recommendations