Advertisement

Modeling and simulation of pH-sensitive hydrogels

  • Thomas WallmerspergerEmail author
  • Karsten Keller
  • Bernd Kröplin
  • Margarita Günther
  • Gerald Gerlach
Original Contribution

Abstract

Polyelectrolyte gels are ductile elastic electroactive materials. They consist of a polymer network with bound charged groups and a liquid phase with mobile ions. In water-based solutions, these gels show enormous swelling capabilities under the influence of different types of stimulation, such as chemical, electrical, or thermal. In the present work, a coupled multi-field formulation for polyelectrolyte gels using the finite element method is applied. Additionally to the three given fields—mechanical, electrical, and chemical fields—the dissociation reactions of the bound charges in the gel phase are considered. In this study, chemical stimulation (change of pH or salt concentration) is investigated for gels placed in solution baths. By changing the ambient conditions, we are able to simulate both pH stimulation and change of salt concentration, and to give the change of the mobile and bound ion concentrations, the electric potential, and the mechanical displacement.

Keywords

Polyelectrolyte gels Coupled chemo-electro-mechanical multi-field formulation Chemical stimulation pH-sensitive gels Dissociation reactions Numerical simulation 

Notes

Acknowledgements

This research has been financially sponsored by the Deutsche Forschungsgemeinschaft DFG within the SPP1259 “Intelligente Hydrogele” under the grant WA 2323/2-2.

References

  1. 1.
    Flory J, Rehner J (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11(11):512–520CrossRefGoogle Scholar
  2. 2.
    Flory J, Rehner J (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11(11):521–526CrossRefGoogle Scholar
  3. 3.
    Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromolecules 25:5504–5511CrossRefGoogle Scholar
  4. 4.
    Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320CrossRefGoogle Scholar
  5. 5.
    Shahinpoor M (1995) Micro-electro-mechanics of ionic polymeric gels as electrically controllable artificial muscles. J Intell Mater Syst Struct 6:307–314CrossRefGoogle Scholar
  6. 6.
    Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J Chem Phys 93(6):4462–4472CrossRefGoogle Scholar
  7. 7.
    Neubrand W (1999) Modellbildung und Simulation von Elektromembranverfahren. Ph.D. thesis, Universität StuttgartGoogle Scholar
  8. 8.
    De SK, Aluru NR, Johnson B (2002) Equilibrium swelling and kinetics of pH-resonsive hydrogels: models, experiments, and simulations. Journal of Microelectromechanical Systems 11(5):544–555CrossRefGoogle Scholar
  9. 9.
    De SK, Aluru NR (2004) A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech Mater 36(5–6):395–410CrossRefGoogle Scholar
  10. 10.
    Brock D, Lee W, Segalman D, Witkowski W (1994) A dynamic model of a linear actuator based on polymer hydrogel. J Intell Mater Syst Struct 5:764–771CrossRefGoogle Scholar
  11. 11.
    Segalman DJ, Witkowski WR, Rao RR, Adolf DB, Shahinpoor M (1993) Finite element simulation of the 2d collapse of a polyelectrolyte gel disk. In: Proceedings of SPIE, vol 1916. pp 14–21Google Scholar
  12. 12.
    Wallmersperger T, Kröplin B, Holdenried J, Gülch RW (2001) A coupled multi-field formulation for ionic polymer gels in electric fields. In: Bar-Cohen Y (ed) 8th international symposium on smart structures and materials. Electroactive polymer actuators and devices, vol 4329, SPIE, 2001, Newport Beach. pp 264–275Google Scholar
  13. 13.
    Wallmersperger T, Kröplin B, Gülch R (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels—numerical and experimental investigations. Mech Mater 36(5–6):411–420CrossRefGoogle Scholar
  14. 14.
    Ballhause D, Wallmersperger T (2008) Coupled chemo-electro-mechanical FE-simulation of hydrogels—part I: chemical stimulation. Smart Mater Struct 17(045011)Google Scholar
  15. 15.
    Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical FE-simulation of hydrogels—part II: electrical stimulation. Smart Mater Struct 17(045012)Google Scholar
  16. 16.
    Keller K, Wallmersperger T, Kröplin B, Günther M, Gerlach G (2011) Modelling of temperature-sensitive polyelectrolyte gels by the use of the coupled chemo-electro-mechanical formulation. Mechanics of Advanced Materials and Structures (in press)Google Scholar
  17. 17.
    de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRefGoogle Scholar
  18. 18.
    Tamagawa H, Taya M (2000) A theoretical prediction of the ions distribution in an amphoteric polymer gel. Mater Sci Eng A 285(1–2):314–325Google Scholar
  19. 19.
    Li H, Luo R, Lam KY (2007) Modeling of ionic transport in electric-stimulus-responsive hydrogels. J Membr Sci 289(1–2):284–296CrossRefGoogle Scholar
  20. 20.
    Orlov Y, Xu X, Maurer G (2006) Equilibrium swelling of n-isopropylacrylamide based ionic hydrogels in aqueous solutions of organic solvents: comparison of experiment with theory. Fluid Phase Equilib 249(1–2):6–16CrossRefGoogle Scholar
  21. 21.
    Orlov Y, Xu X, Maurer G (2007) An experimental and theoretical investigation on the swelling of n-isopropyl acrylamide based ionic hydrogels in aqueous solutions of (sodium chloride or di-sodium hydrogen phosphate). Fluid Phase Equilib 254(1–2):1–10CrossRefGoogle Scholar
  22. 22.
    Scharfer P, Schabel W, Kind M (2007) Mass transport measurements in membranes by means of in situ raman spetroscopy—first results of methanol and water profils in fuel cell membranes. J Membr Sci 303:37–42CrossRefGoogle Scholar
  23. 23.
    Scharfer P, Schabel W, Kind M (2008) Modelling of alcohol and water diffusion in fuel cell membranes. Chem Eng Sci 63(19):4676–4684CrossRefGoogle Scholar
  24. 24.
    Mann BA, Holm C, Kremer K (2005) Swelling of polyelectrolyte networks. J Chem Phys 122(15):15493CrossRefGoogle Scholar
  25. 25.
    Mann BA, Holm C, Kremer K (2006) The swelling behaviour of charged hydrogels. Macromol Symp 1237:90–107CrossRefGoogle Scholar
  26. 26.
    Ehlers W, Markert B, Akartürk A (2002) A continuum approach for 3-d finite viscoelastic swelling of charged tissues and gels. In: Eberhardsteiner J, Mang HA, Rammerstorfer FG (eds) Proceedings of the fifth world congress on computational mechanics, Vienna, Austria, 7–12 July 2002Google Scholar
  27. 27.
    Acartürk A (2009) Simulation of charged hydrated porous materials. PhD thesis, Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  28. 28.
    Walter J, Ermatchkov V, Vrabec J, Hasse H (2010) Molecular dynamics and experimental study of conformation change of poly(n-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib 296:164–172CrossRefGoogle Scholar
  29. 29.
    Wallmersperger T, Wittel FK, D’Ottavio M, Kröplin B (2008) Multiscale modeling of polymer gels - chemo-electric model versus discrete element model. Mechanics of Advanced Materials and Structures 15(3–4):228–234CrossRefGoogle Scholar
  30. 30.
    Guenther M, Gerlach G, Wallmersperger T (2009) Non-linear effects in hydrogel-based chemical sensors: experiment and modeling. J Intell Mater Syst Struct 20(8):949–961CrossRefGoogle Scholar
  31. 31.
    Li H, Ng TY, Yew YK, Lam KY (2005) Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromolecules 6:109–120CrossRefGoogle Scholar
  32. 32.
    Kang B, Dai Y, Shen X, Chen D (2008) Dynamical modeling and experimental evidence on the swelling/deswelling behaviors of pH sensitive hydrogels. Mater Lett 62:3444–3446CrossRefGoogle Scholar
  33. 33.
    Trinh TQ, Sorber J, Gerlach G (2009) Design, simulation and experimental characteristics of hydrogel-based piezoresistive pH sensors. In: Physics and engineering of new materials, Springer Proceedings Physics, vol 127, pp 287–294Google Scholar
  34. 34.
    Suthar KJ, Mancini DC, Ghantasala MK (2010) Simulation of the effect of different parameters on the swelling characteristics of a ph-sensitive hydrogel. In: Ounaies Z, Li J (eds) Proceedings of SPIE: behavior and mechanics of multifunctional materials and composites 2010, vol 7644. SPIEGoogle Scholar
  35. 35.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398Google Scholar
  36. 36.
    Kim B, Flamme KL, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89:1606–1613CrossRefGoogle Scholar
  37. 37.
    Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77(11):5725–5729CrossRefGoogle Scholar
  38. 38.
    Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 17:2917–2921Google Scholar
  39. 39.
    Gülch RW, Holdenried J, Weible A, Wallmersperger T, Kröplin B (2000) Polyelectrolyte gels in electric fields: a theoretical and experimental approach. In: SPIE proceedings of smart structures and materials 2000: electroactive polymer actuators and devices (EAPAD), vol 3987. pp 193–202Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas Wallmersperger
    • 1
    Email author
  • Karsten Keller
    • 2
  • Bernd Kröplin
    • 2
  • Margarita Günther
    • 3
  • Gerald Gerlach
    • 3
  1. 1.Institut für FestkörpermechanikTechnische Universität DresdenDresdenGermany
  2. 2.Institut für Statik und Dynamik der Luft- und RaumfahrtkonstruktionenUniversität StuttgartStuttgartGermany
  3. 3.Institut für FestkörperelektronikTechnische Universität DresdenDresdenGermany

Personalised recommendations