Polyelectrolyte microgels based on poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes

Original Contribution


The influence of the charge density of microgels on the binding of oppositely charged polyelectrolytes was investigated. The charge density in the microgels was varied via the amounts of charged comonomer (as e.g., methacrylic acid) during microgel synthesis and also by changing the reaction conditions in order to influence the distribution of the charged comonomer inside the poly-N-isopropylacrylamide-co-methacrylic acid microgel. The variation in charge density was monitored by taking advantage of the polyelectrolyte effect during acid–base titration. Data of titrations of several microgels were analyzed by a modified Henderson–Hasselbalch equation to monitor the influence of the charge density. The microgels contain either different amounts of cross-linker but same amounts of charged comonomer or the microgels were synthesized with same amounts of cross-linker but different functional monomers with different reactivities yielding different spatial distributions. Charge density and spatial distribution of charges in the microgel strongly influence swelling and interaction with polyelectrolytes. As expected, a highly charged microgel binds more polyelectrolyte than a microgel with low amount of charged groups. The amount, however, does not only scale with the number of charges per microgel but also with the charge density of the microgel. The lower the charge density of the microgel, the more polyelectrolyte per negative charge can bind. In addition, the charge density determines whether and at which composition charge reversal of the microgel–polyelectrolyte complexes occur.


Charge density Polyelectrolytes Polycations Microgels Methacrylic acid 



We thank Sebastian Wanders, Michael Kather, Christian Plum, and Manuel Noack for help with the microgel synthesis and complex formation, respectively. This work was supported by the Deutsche Forschungsgemeinschaft.

Supplementary material

396_2011_2401_MOESM1_ESM.doc (38 kb)
Table 1 (DOC 38 kb)
396_2011_2401_MOESM2_ESM.doc (36 kb)
Table 2 (DOC 36 kb)
396_2011_2401_MOESM3_ESM.doc (40 kb)
Table 3 (DOC 35 kb)
396_2011_2401_MOESM4_ESM.doc (170 kb)
Fig. S1 (DOC 170 kb)
396_2011_2401_MOESM5_ESM.doc (150 kb)
Fig. S2 (DOC 150 kb)
396_2011_2401_MOESM6_ESM.doc (269 kb)
Fig. S3 (DOC 269 kb)


  1. 1.
    Cohen Stuart MA (2008) Colloid Polym Sci 286:855CrossRefGoogle Scholar
  2. 2.
    Dautzenberg H, Jaeger W, Koetz J, Philipp B, Seidel C, Stscherbina D (1984) Polyelectrolytes. Carl Hanser Verlag, MünchenGoogle Scholar
  3. 3.
    Phillip B, Hong LT, Dawydoff W, Linow KJ (1981) Z Anorg Allg Chem 497:219CrossRefGoogle Scholar
  4. 4.
    Koetz J, Koepke H, Schmidt-Naake G, Zarras P, Vogl O (1996) Polymer 37:2775CrossRefGoogle Scholar
  5. 5.
    Buchhammer HM, Petzold G, Lunkwitz K (1999) Langmuir 15:4306CrossRefGoogle Scholar
  6. 6.
    Dautzenberg H, Linow KJ, Philipp B (1981) Acta Polym 33:619CrossRefGoogle Scholar
  7. 7.
    Kabanov VA, Zezin AB (1984) Pure Appl Chem 56:343CrossRefGoogle Scholar
  8. 8.
    Shovsky A, Varga I, Makuska R, Claesson PM (2009) Langmuir 25:6113CrossRefGoogle Scholar
  9. 9.
    Dautzenberg H, Gao Y, Hahn M (2000) Langmuir 16:9070CrossRefGoogle Scholar
  10. 10.
    Kabanov AV, Bronich T, Kabanov VA, Yu K, Eisenberg A (1996) Macromolecules 29:6797CrossRefGoogle Scholar
  11. 11.
    Harada A, Kataoka K (1995) Macromolecules 28:5294CrossRefGoogle Scholar
  12. 12.
    van de Burgh S, de Keizer A, Cohen Stuart M (2004) Langmuir 20:1073CrossRefGoogle Scholar
  13. 13.
    Pergushov D, Remizova E, Feldthusen J, Zezin A, Müller A, Kabanov V (2003) J Phys Chem B 107:8093CrossRefGoogle Scholar
  14. 14.
    Gohy J, Varshney S, Antoun S, Jerome R (2000) Macromolecules 33:9298CrossRefGoogle Scholar
  15. 15.
    Berret JF (2009) Colloid Polym Sci 287:801CrossRefGoogle Scholar
  16. 16.
    Nisha CK, Manorama V, Kizhakkedathu JN, Maiti S (2004) Langmuir 20:8468CrossRefGoogle Scholar
  17. 17.
    Bronich TK, Cherry T, Vinogradov SV, Eisenberg A, Kabanov VA, Kabanov AV (1998) Langmuir 14:6101CrossRefGoogle Scholar
  18. 18.
    Solomatin SV, Bronich TK, Bargar TW, Eisenberg A, Kabanov VA, Kabanov AV (2003) Langmuir 19:8069CrossRefGoogle Scholar
  19. 19.
    Killmann E, Bauer D, Fuchs A, Portenlaenger O, Rehmet R, Rustemeier O (1998) Prog Colloid & Polym Sci 111:135CrossRefGoogle Scholar
  20. 20.
    Gillies G, Lin W, Borkovec M (2007) J Phys Chem B 111:8626CrossRefGoogle Scholar
  21. 21.
    Shubin V, Samoshina Y, Menshikova A, Evseeva T (1997) Colloid Polym Sci 275:655CrossRefGoogle Scholar
  22. 22.
    Kleimann J, Gehin-Delval C, Auweter H, Borkovec M (2005) Langmuir 21:3688CrossRefGoogle Scholar
  23. 23.
    Bauer D, Buchhammer H, Fuchs A, Jaeger W, Killmann E, Lunkwitz K, Rehmet R, Schwarz S (1999) Colloids Surf A 156:291CrossRefGoogle Scholar
  24. 24.
    Cakara D (2004) Charging behavior of polyamines in solution and on surfaces: A potentiometric titration study. Dissertation, University of GenevaGoogle Scholar
  25. 25.
    Win JW, Hearn J, Ho CC, Ottewill RH (1974) Colloid Polym Sci 252:464CrossRefGoogle Scholar
  26. 26.
    Nayak S, Lyon LA (2005) Angew Chem 117:7862CrossRefGoogle Scholar
  27. 27.
    Lally S, Bird R, Freemont TJ, Saunders BR (2009) Colloid Polym Sci 287:335CrossRefGoogle Scholar
  28. 28.
    Berndt I, Pederson JS, Richtering W (2006) Angew Chem Int Ed 45:1737CrossRefGoogle Scholar
  29. 29.
    Keerl M, Pedersen JS, Richtering W (2009) J Am Chem Soc 131:3093CrossRefGoogle Scholar
  30. 30.
    Meng ZY, Smith MH, Lyon LA (2009) Colloid Polym Sci 287:277CrossRefGoogle Scholar
  31. 31.
    Ho KM, Li WY, Wong CH, Li P (2010) Colloid Polym Sci 288:1503CrossRefGoogle Scholar
  32. 32.
    Das M, Kumacheva E (2006) Colloid Polym Sci 284:1073CrossRefGoogle Scholar
  33. 33.
    Das M, Sanson N, Kumacheva E (2008) Chem Mater 20:7157CrossRefGoogle Scholar
  34. 34.
    Schachschal S, Balaceanu A, Melian C, Demco DC, Eckert T, Richtering W, Pich A (2010) Macromolecules 43:4331CrossRefGoogle Scholar
  35. 35.
    Bradley M, Vincent B, Burnett G (2009) Colloid Polym Sci 287:345CrossRefGoogle Scholar
  36. 36.
    Kokufuta E, Zhang YQ, Tanaka T, Mamada A (1993) Macromolecules 26:1053CrossRefGoogle Scholar
  37. 37.
    Greinert N, Richtering W (2004) Colloid Polym Sci 282:1146CrossRefGoogle Scholar
  38. 38.
    Kleinen J, Richtering W (2008) Macromolecules 41:1785CrossRefGoogle Scholar
  39. 39.
    Kleinen J, Klee A, Richtering W (2010) Langmuir 26:11258CrossRefGoogle Scholar
  40. 40.
    Hoare T, McLean D (2006) J Phys Chem B 110:20327CrossRefGoogle Scholar
  41. 41.
    Hoare T, Pelton R (2006) J Colloid Interface Sci 303:109CrossRefGoogle Scholar
  42. 42.
    Hoare T, Pelton R (2004) Langmuir 20:2123CrossRefGoogle Scholar
  43. 43.
    Kabanov VA, Topchiev DA, Karaputadze TM, Mkrtchian LA (1975) Eur Polym J 11:153CrossRefGoogle Scholar
  44. 44.
    Brugger B, Richtering W (2008) Langmuir 24:7769CrossRefGoogle Scholar
  45. 45.
    Blackburn WH, Lyon LA (2008) Colloid Polym Sci 286:563CrossRefGoogle Scholar
  46. 46.
    Katchalsky A, Spitnik P (1947) J Polym Sci 2:432CrossRefGoogle Scholar
  47. 47.
    Fujii N, Fujimoto K, Michinobu T, Akada M, Hill JP, Shiratori S, Ariga K, Shigehara K (2010) Macromolecules 43:3947CrossRefGoogle Scholar
  48. 48.
    Osada Y, Abe K, Tsuchida E (1973) J Polym Soc Jpn 11:2219Google Scholar
  49. 49.
    Seno M, Lin ML, Iwamoto K (1991) Colloid Polym Sci 269:873CrossRefGoogle Scholar
  50. 50.
    Kabanov AV, Vinogradov SV (2009) Angew Chem Int Ed 48:5418CrossRefGoogle Scholar
  51. 51.
    Wong J, Diez-Pascual A, Richtering W (2009) Macromolecules 42:1229CrossRefGoogle Scholar
  52. 52.
    Möhwald H (2010) Colloid Polym Sci 288:123CrossRefGoogle Scholar
  53. 53.
    Ohshima H (2007) Colloid Polym Sci 285:1411CrossRefGoogle Scholar
  54. 54.
    Terayama HJ (1952) Polym Sci 8:243CrossRefGoogle Scholar
  55. 55.
    Horn D, Heuck CJ (1983) Biol Chem 1258:1665Google Scholar
  56. 56.
    Hoare T, Pelton R (2006) Langmuir 22:7342CrossRefGoogle Scholar
  57. 57.
    Hoare T, McLean D (2006) Macromol Theory Simul 15:619CrossRefGoogle Scholar
  58. 58.
    Zhou S, Chu B (1998) J Phys Chem B 102:1364CrossRefGoogle Scholar
  59. 59.
    Mende M, Petzold G, Buchhammer H (2002) Colloid Polym Sci 280:342CrossRefGoogle Scholar
  60. 60.
    Lindhoud S, Norde W, Cohen Stuart MA (2009) J Phys Chem B 113:5431CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Physical ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations