Microgel applications and commercial considerations

  • Joanna B. Thorne
  • George J. Vine
  • Martin J. Snowden
Original Contribution

Abstract

The term microgel has been used to describe a variety of particles that differ substantially in structure, physicochemical properties, preparation and application and has been used interchangeably with terms such as nanogel, microsphere and macrogel. Many excellent and wide-ranging reviews have been published on the numerous particle types considered to fall within the broad sphere of nano-/microparticles. The aim of this review is to focus on applications of microgel particles that are synthesised by polymerisation, are of colloidal size and exhibit conformational changes in response to changes in environmental conditions. It is not the intention to attempt to cover every potential microgel application; instead, a selected range of areas will be covered and the commercial implications of scaling up the production of microgels for such purposes will be discussed. A brief description of the characteristics of microgel particles is followed by discussion of applications such as enhanced oil recovery, biomaterials and catalysis, before issues of commercialising microgel production are considered.

Keywords

Microgel Applications Commercial implications Properties Poly(NIPAM) Nanoparticles 

Abbreviation

2-PrOH

2-Propanol

4-VP

4-Vinylpyridine

AA

Acrylic acid

AAPBA

3-Acrylamidophenylboronic acid

AM

Acrylamide

AMPS

2-Acrylamido-2-methyl-1-propanesulphonic acid

APBA

3-Aminophenylboronic acid

BDDA

1,4-Butanediol diacrylate

BuA

Butyl acrylate

CRP

Controlled/‘living’ radical polymerization

DLS

Dynamic light scattering

DVB

Divinylbenzene

EA

Ethylacrylate

EDC

N-ethyl-N′-dimethylaminopropyl-carbodiimide

EOR

Enhanced oil recovery

ERF

Electrorheological fluid

EtOH

Ethanol

Fig

Figure

HEMA

2-Hydroxyethyl methacrylate

KPS

Dipotassium persulphate

LCST

Lower critical solution temperature

LFRP

Living free radical polymerisation

MAA

Methacrylic acid

MBA

N,N′-Methylene bisacrylamide

MeOH

Methanol

MIPs

Molecularly imprinted polymers

MMA

Methylmethacrylate

NIPAM

N-Isopropylacrylamide

nm

Nanometre

o/w

Oil/water

pKa

Acid dissociation constant

POEGMA

Poly-oligo(ethylene glycol) methacrylates

SDS

Sodium dodecyl sulphate

SFEP

Surfactant-free emulsion polymerisation

TEM

Transmission electron microscope

VP

Vinylpyridine

VPTT

Volume phase transition temperature

w/o

Water/oil

μm

Micrometre

References

  1. 1.
    Murray MJ, Snowden MJ (1995) Adv Colloid Interface Sci 54:73–91Google Scholar
  2. 2.
    Saunders BR, Vincent B (1999) Adv Colloid Interface Sci 80:1–25Google Scholar
  3. 3.
    Pelton R (2000) Adv Colloid Interface Sci 85:1–33Google Scholar
  4. 4.
    Ballauff M, Lu Y (2007) Polymer 48:1815–1823Google Scholar
  5. 5.
    Gracia LH, Snowden MJ (2007) Preparation, properties and applications of colloidal microgels. In: Williams PA (ed) Handbook of industrial water soluble polymers. Blackwell, Oxford, pp 268–297Google Scholar
  6. 6.
    Kausar N, Chowdhry BZ, Snowden MJ (2008) Microgels from smart polymers. In: Galaev I, Mattiasson B (eds) Smart polymers: applications in biotechnology and biomedicine (2nd). CRC, Boca Raton, pp 137–175Google Scholar
  7. 7.
    Tan BH, Tam KC (2008) Adv Colloid Interface Sci 136:25–44Google Scholar
  8. 8.
    Fernández-Barbero A, Suárez IJ, Sierra-Martín B, Fernández-Nieves A, Javier de las Nieves F, Marquez M, Rubio-Retama J, López-Cabarcos E (2009) Adv Colloid Interface Sci 147–148:88–108Google Scholar
  9. 9.
    Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R (2009) Adv Colloid Interface Sci 147–148:251–262Google Scholar
  10. 10.
    Karg M, Hellweg T (2009) J Mater Chem 19:8714–8727Google Scholar
  11. 11.
    Ho KM, Li WY, Wong CH, Li P (2010) Colloid Polym Sci 288:1503Google Scholar
  12. 12.
    Texter J (2009) Colloid Polym Sci 287:313–321Google Scholar
  13. 13.
    Liu R, Fraylich M, Saunders BR (2009) Colloid Polym Sci 287:627–643Google Scholar
  14. 14.
    Schexnailder P, Schmidt G (2009) Colloid Polym Sci 287:1–11Google Scholar
  15. 15.
    Pelton RH, Chibante P (1986) Colloids Surf 20:247–256Google Scholar
  16. 16.
    Zhang J, Pelton R (1999) Colloid Surf A Physicochem Eng Aspects 156:111–122Google Scholar
  17. 17.
    Otake K, Inomata H, Konno M, Saito S (1990) Macromol 23:283–289Google Scholar
  18. 18.
    Woodward NC, Chowdhry BZ, Snowden MJ, Leharne SA, Giffiths PC, Winnington AL (2003) Langmuir 19:3202–3211Google Scholar
  19. 19.
    Lopez VC, Raghavan SL, Snowden MJ (2004) React Funct Polym 58:175–185Google Scholar
  20. 20.
    Lopez VC, Hadgraft J, Snowden MJ (2005) Intern J Pharm 292:137Google Scholar
  21. 21.
    Lowe JS, Chowdhry BZ, Parsonage JR, Snowden MJ (1998) Polym 39:1207–1212Google Scholar
  22. 22.
    Duracher D, Elasïssari A, Pichot C (1999) J Polym Sci A Polym Chem 37:1823–1837Google Scholar
  23. 23.
    Zhang H, Mardyani S, Chan WCW, Kumacheva E (2006) Biomacromol 7:1568–1572Google Scholar
  24. 24.
    Peng S, Wu C (2000) Macromol Sympos 159:179–186Google Scholar
  25. 25.
    Peng S, Wu C (2001) Polym 42:6871–6876Google Scholar
  26. 26.
    Ma X, Xi J, Huang X, Zhao X, Tang X (2004) Mater Lett 58:3400–3404Google Scholar
  27. 27.
    Liu HY, Zhu XX (1999) Polym 40:6985–6990Google Scholar
  28. 28.
    Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) J Chem Soc Faraday Trans 92:5013–5016Google Scholar
  29. 29.
    Das M, Kumacheva E (2006) Colloid Polym Sci 284:1073–1084Google Scholar
  30. 30.
    Saunders BR (2004) Langmuir 20:3925–3932Google Scholar
  31. 31.
    Crowther HM, Vincent B (1998) Colloid Polym Sci 276:46–51Google Scholar
  32. 32.
    McPhee W, Tam KC, Pelton R (1993) J Colloid Interfac Sci 156:24–30Google Scholar
  33. 33.
    Mukae K, Sakuri M, Sawamura S, Makino K, Kim SW, Ueda I, Shirahama K (1993) J Phys Chem 97:737–741Google Scholar
  34. 34.
    Mielke M, Zimehl R (1998) Prog Colloid Polym Sci 111:74–77Google Scholar
  35. 35.
    Saunders BR, Crowther HM, Vincent B (1997) Macromol 30:482–487Google Scholar
  36. 36.
    Zhu PW, Napper DH (1996) J Colloid Interface Sci 177:343–352Google Scholar
  37. 37.
    Soper AK, Finney JL (1993) Phys Rev Lett 71:4346–4349Google Scholar
  38. 38.
    Islam AM, Chowdhry BZ, Snowden MJ (1995) Adv Colloid Interface Sci 62:109–136Google Scholar
  39. 39.
    Eastman J (2005) Colloid stability. In: Cosgrove T (ed) Colloid science: principles, methods and applications. Blackwell, Oxford, pp 36–49Google Scholar
  40. 40.
    Hall RJ, Pinkrah VT, Chowdhry BZ, Snowden MJ (2004) Colloid Surf A Physicochem Eng Asp 233:25–38Google Scholar
  41. 41.
    Snowden MJ (1994) Flocculants. In: Bloor D, Brook RJ, Flemings MC, Mahajan S (eds) The encyclopedia of advanced materials. Pergamon, Oxford, pp 858–862Google Scholar
  42. 42.
    Islam AM, Chowdhry BZ, Snowden MJ (1995) J Phys Chem 99:14205–14206Google Scholar
  43. 43.
    Bratby J (2006) Coagulation and flocculation in water and wastewater treatment, 2nd edn. IWA, LondonGoogle Scholar
  44. 44.
    Karg M, Hellweg T (2009) Curr Opin Colloid Interface Sci 14:438–450Google Scholar
  45. 45.
    Parsons S, Jefferson B (2006) Introduction to potable water treatment processes. Blackwell, OxfordGoogle Scholar
  46. 46.
    Morris GE, Vincent B, Snowden MJ (1997) J Colloid Interf Sci 190:198–205Google Scholar
  47. 47.
    IUPAC (2006) Compendium of Chemical Terminology (2nd) (the “Gold Book”). Compiled by McNaught, AD, Wilkinson, A. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by Nic, M, Jirat, J, Kosata, B; updates compiled by Jenkins, A. ISBN 0-9678550-9-8. doi: 10.1351/goldbook. Last update: 2009-09-07; version: 2.1.5. doi of this term: doi: 10.1351/goldbook.P04728
  48. 48.
    Snowden MJ, Thomas D, Vincent B (1993) Analyst 118:1367–1369Google Scholar
  49. 49.
    Collings AG, Wright CC (1985) Enhanced oil recovery injection waters. In: Donaldson EC, Chilingarian GV, Yen TF (eds) Enhanced oil recovery, fundamentals and analyses. Elsevier Science, New York, pp 151–217Google Scholar
  50. 50.
    Wang L, Zhang GC, Ge JJ, Li GH, Zhang JQ, Ding BD (2010) Int Oil Gas Conf Exhibition 8:10Google Scholar
  51. 51.
    Nur H, Snowden MJ, Cornelius VJ, Mitchell JC, Harvey PJ, Benée LS (2009) Colloid Surf A Physicochem Eng Asp 335:133–137Google Scholar
  52. 52.
    Bhat SV (2002) Biomaterials. Kluwer, DordrechtGoogle Scholar
  53. 53.
    Basu B, Katti DS, Kumar A (eds) (2009) Advanced biomaterials: fundamentals, processing and applications. Wiley, HobokenGoogle Scholar
  54. 54.
    Hu Z, Cai T, Chi C (2010) Soft Matter 6:2115–2123Google Scholar
  55. 55.
    Delgado C, Pedley RB, Herraez A, Boden R, Boden JA, Keep PA, Chester KA, Fisher D (1996) Br J Cancer 73:175–182Google Scholar
  56. 56.
    Freemont TJ, Saunders BR (2008) Soft Matter 4:919–924Google Scholar
  57. 57.
    Saunders JM, Tong T, Le Maitre CL, Freemont TJ, Saunders BR (2007) Soft Matter 3:486–494Google Scholar
  58. 58.
    Gan T, Guan Y, Zhang Y (2010) J Mater Chem 20:5937–5944Google Scholar
  59. 59.
    Sisson AL, Haag R (2010) Soft Matter 6:4968–4975Google Scholar
  60. 60.
    Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS (2008) Lab Chip 8:1056–1061Google Scholar
  61. 61.
    Hopkins S, Carter SR, Haycock JW, Fullwood NJ, MacNeil S, Rimmer S (2009) Soft Matter 5:4928–4937Google Scholar
  62. 62.
    Rosiak JM, Janik I, Kadlubowski S, Kozicki M, Kujawa P, Stasica P, Ulanski P (2003) Nucl Instrum Methods Phys Res 208:325–330Google Scholar
  63. 63.
    Kawaguchi H (2000) Prog Polym Sci 25:1171–1210Google Scholar
  64. 64.
    Aqil A, Vasseur S, Duguet E, Passirani C, Benoit JP, Jerome R, Jerome C (2008) J Mater Chem 18:3352–3360Google Scholar
  65. 65.
    Philips JL (2005) A topical review of magnetic fluid hyperthermia. University of Alabama. http://bama.ua.edu/∼joshua/archive/aug05/Jennifer%20Phillips.pdf. Accessed 10 Oct 2010
  66. 66.
    Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Magn Reson Med 49:646–654Google Scholar
  67. 67.
    Ménager C, Sandre O, Mangili J, Cabuil V (2004) Polym 45:2475–2481Google Scholar
  68. 68.
    Sanson N, Reiger J (2010) Polym Chem 1:965–977Google Scholar
  69. 69.
    Sukhorukov G, Fery A, Möhwald H (2005) Prog Polym Sci 30:885–897Google Scholar
  70. 70.
    Cao Z, Ziener U, Landfester K (2010) Macromol 43:6353–6360Google Scholar
  71. 71.
    Mu B, Liu P, Dong Y, Lu C, Wu X (2010) J Polym Sci A Polym Chem 48:3135–3144Google Scholar
  72. 72.
    Pastorino L, Erokhina S, Caneva-Soumetz F, Ruggiero C (2009) J Nanosci Nanotechnol 9:6753–6759Google Scholar
  73. 73.
    Hammer DA, Discher DE (2001) Annu Rev Mater Res 31:387–404Google Scholar
  74. 74.
    Yoshida M, Asano M, Suwa T, Katakai R (1999) Radiat Phys Chem 55:677–680Google Scholar
  75. 75.
    Khan MZ, Prebeg Z, Kurjakovic N (1999) J Control Release 58:215Google Scholar
  76. 76.
    Ramkissoon-Ganorkar C, Liu F, Baudys M, Kim SW (1999) J Controlled Release 59:287Google Scholar
  77. 77.
    Zhu W, Wang B, Zhang Y, Ding J (2005) Eur Polym J 41:2161–2170Google Scholar
  78. 78.
    Zhang Y, Zhu W, Wang B, Ding J (2005) J Control Release 105:260–268Google Scholar
  79. 79.
    Ye L, Cormack PAG, Mosbach K (2001) Anal Chim Acta 435:187–196Google Scholar
  80. 80.
    Flavin K, Resmini M (2009) Anal Bioanal Chem 393:437–444Google Scholar
  81. 81.
    Bompart M, Haupt K (2009) Aust J Chem 62:751–761Google Scholar
  82. 82.
    Wulff G, Chong B-O, Kolb U (2006) Angew Chem Int Ed 45:2955–2958Google Scholar
  83. 83.
    Pasetto P, Maddock SC, Resmini M (2005) Anal Chim Acta 542:66–75Google Scholar
  84. 84.
    Tominey A, Andrew D, Oliphant L, Rosair GM, Dupré J, Kraft A (2006) Chem Commun 23:2492–2494Google Scholar
  85. 85.
    Prodi L (2005) New J Chem 29:20–31Google Scholar
  86. 86.
    Mancin F, Rampazzo E, Tecilla P, Tonellato U (2006) Chem Eur J 12:1844–1854Google Scholar
  87. 87.
    Luo Q, Liu P, Guan Y, Zhang Y (2010) ACS Appl Mater Interfaces 2:760–767Google Scholar
  88. 88.
    Gamsey S, Suri JT, Wessling RA, Singaram B (2006) Langmuir 22:9067–9074Google Scholar
  89. 89.
    Wolfbeis OS (2005) J Mater Chem 15:2657–2669Google Scholar
  90. 90.
    Chen J, Zeng F, Wu S, Su J, Zhao J, Tong Z (2009) Nanotechnology 20:365502Google Scholar
  91. 91.
    Su S, Ali MM, Filipe CD, Li Y, Pelton R (2008) Biomacromolecules 9:935–941Google Scholar
  92. 92.
    Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Colloid Polym Sci 270:53–57Google Scholar
  93. 93.
    Fujimoto K, Mizuhara Y, Tamura N, Kawaguchi H (1993) J Intell Mater Syst Struct 4:184–189Google Scholar
  94. 94.
    Kim J, Nayak S, Lyon LA (2005) J Am Chem Soc 127:9588–9592Google Scholar
  95. 95.
    Streigler S (2009) MiniRev Org Chem 6:234–240Google Scholar
  96. 96.
    Gichingaa MG, Streigler S, Dunawaya NA, Barnetta JD (2010) Polymer 51:606–615Google Scholar
  97. 97.
    Chen Z, Xu L, Liang Y, Zhao M (2010) Adv Mater 22:1488–1492Google Scholar
  98. 98.
    Gua X, Xua R, Yuana G, Lua H, Gub B, Xiea H (2010) Anal Chim Acta 675:64–70Google Scholar
  99. 99.
    Cornelius VJ, Snowden MJ, Silver J, Fern GR (2004) React Funct Polym 58:165–173Google Scholar
  100. 100.
    Wong JE, Gaharwar AK, Műller-Schulte D, Bahadur D, Richtering W (2008) J Colloid Interfac Sci 324:47–54Google Scholar
  101. 101.
    Kaneda I, Sogabe A (2005) Colloid Surf A Physicochem Eng Asp 270–271:163–170Google Scholar
  102. 102.
    Wolfe MS (1992) Prog Org Coat 20:487–500Google Scholar
  103. 103.
    Siedel J, Pinkrah VPT, Mitchell JC, Chowdhry BZ, Snowden MJ (2004) Thermochim Acta 414:47–52Google Scholar
  104. 104.
    Bartsch E, Kirsch S, Lindner P, Scherer T, Stölken S (1998) Ber Busengesellschaft fűr Physikaliscge Chem 102:1597–1602Google Scholar
  105. 105.
    Kim YB, Kim H-K, Hong J-W (2002) Surf Coat Technol 153:284–289Google Scholar
  106. 106.
    Corrigan VG, Zawacky SR (1992) Cationic microgels and their use in electrodeposition. US Patent 5096556Google Scholar
  107. 107.
    Goodwin J (2009) Colloids and interfaces with surfactants and polymers, 2nd edn. Wiley, ChichesterGoogle Scholar
  108. 108.
    Valenta C, Auner BG (2004) Eur J Pharm Biopharm 58:279–289Google Scholar
  109. 109.
    Ketz RJ, Prud’homme RK, Graessley WW (1988) Rheol Acta 27:531–539Google Scholar
  110. 110.
    Naé HN, Reichert WW (1992) Rheol Acta 31:351–360Google Scholar
  111. 111.
    Kaneda I, Sogabe A, Nakajima H (2004) J Colloid Interface Sci 275:450–457Google Scholar
  112. 112.
    Kaneda I, Yanaki Y (2002) J Soc Rheol 30:89–94Google Scholar
  113. 113.
    Kaneda I, Miyazawa K, Yanaki T (2001a) Japanese Patent 2001–114641Google Scholar
  114. 114.
    Kaneda I, Miyazawa K, Yanaki T (2001b) Japanese Patent 2001–114642Google Scholar
  115. 115.
    Kaneda I, Miyazawa K, Yanaki T (2001c) Japanese Patent 2001–115135Google Scholar
  116. 116.
    Binks BP (1998) Emulsions—recent advances in understanding. In: Binks BP (ed) Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge, pp 1–55Google Scholar
  117. 117.
    Binks BP (2002) Curr Opin Colloid Interface Sci 7:21–41Google Scholar
  118. 118.
    Binks BP, Murakami R, Armes SP, Fujii S (2005) Angew Chem Int Ed 44:4795–4798Google Scholar
  119. 119.
    Binks BP, Murakami R, Armes SP, Fujii S (2006) Langmuir 22:2050–2057Google Scholar
  120. 120.
    Fujii S, Read ES, Binks BP, Armes SP (2005) Adv Mater 17:1014Google Scholar
  121. 121.
    Fujii S, Randall DP, Armes SP (2004) Langmuir 20:11329Google Scholar
  122. 122.
    Ngai T, Behrens SH, Auweter H (2005) Chem Commun 3:331–333Google Scholar
  123. 123.
    Ngai T, Auweter H, Behrens SH (2006) Macromol 39:8171–8177Google Scholar
  124. 124.
    Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W (1994) Colloid Polym Sci 272:467Google Scholar
  125. 125.
    Pelton R (2004) Macromol Symp 207:57–65Google Scholar
  126. 126.
    Sansona N, Rieger J (2010) Polym Chem 1:965Google Scholar
  127. 127.
    Li P, Zhu J, Sunintaboon P, Harris FW (2002) Langmuir 18:8641Google Scholar
  128. 128.
    Li P, Zhu J, Sunintaboon P, Harris FW (2003) J Disp Sci Technol 24:607Google Scholar
  129. 129.
    Zhu J, Li P (2003) J Polym Sci A Polym Chem 41:3346Google Scholar
  130. 130.
    Gao H, Miasnikova A, Matyjaszewski K (2008) Macromolecules 41:7843–7849Google Scholar
  131. 131.
    Gao H, Wenwen L, Matyjaszewski K (2008) Macromolecules 41:2335–3340Google Scholar
  132. 132.
    Bannister I, Billingham NC, Armes SP, Rannard SP, Findlay P (2006) Macromolecules 39:7483–7492Google Scholar
  133. 133.
    Gao H, Polanowski P, Matyjaszewski K (2009) Macromolecules 42:5925–5932Google Scholar
  134. 134.
    Poly J, Wilson DJ, Destarac M, Taton R (2008) Macromol Rapid Commun 29:1965–1972Google Scholar
  135. 135.
    Taton D, Baussard JF, Dupayage L, Poly J, Gnanou Y, Ponsinet V, Destarac M, Mignaud C, Pitois C (2006) Chem Commun 18:1953–1955Google Scholar
  136. 136.
    Wilkinson MC, Hearn J, Steward PA (1999) Adv Colloid Interface Sci 81:77–165Google Scholar
  137. 137.
    Gilányi T, Varga I, Mészáros R, Filipcsei G, Zrínyi M (2001) Langmuir 17:4764–4769Google Scholar
  138. 138.
    Mears S, Deng Y, Cosgrove T, Pelton R (1997) Langmuir 13:1901Google Scholar
  139. 139.
    Agbugba CB, Hendriksen BA, Chowdhry BZ, Snowden MJ (1998) Colloids Surf 137:155–164Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Joanna B. Thorne
    • 1
  • George J. Vine
    • 1
  • Martin J. Snowden
    • 1
  1. 1.School of ScienceUniversity of GreenwichKentUK

Personalised recommendations