Colloid and Polymer Science

, Volume 289, Issue 4, pp 345–359 | Cite as

Drops and shells of liquid crystal

Invited Review


We review the state of the art concerning drops and shells of liquid crystal. We especially focus on the defect structures observed with liquid crystals with different degrees of order under different boundary conditions and on the transitions between these structures. We conclude with an overview where we emphasize those areas that are still unexplored.


Liquid crystal Nematic Cholesteric Smectic Drops Spherical geometry Topological defects 



We thank the National Science Foundation under project DMR-0847304. Dr. Lopez-Leon acknowledges the European Marie Curie Program for financial support.


  1. 1.
    Kleman M, Lavrentovich OD (2001) Soft matter physics. Springer, New YorkGoogle Scholar
  2. 2.
    Mermin ND (1979) Topological theory of defects in ordered media. Rev Mod Phys 51(3):591–648CrossRefGoogle Scholar
  3. 3.
    Bowick MJ, Giomi L (2009) Two-dimensional matter: order, curvature and defects. Adv Phys 58(5):449–563. doi: 10.1080/00018730903043166 CrossRefGoogle Scholar
  4. 4.
    Bowick M, Cacciuto A, Nelson DR, Travesset A (2002) Crystalline order on a sphere and the generalized Thomson problem. Phys Rev Lett 89(18):4. doi: 10.1103/PhysRevLett.89.185502 CrossRefGoogle Scholar
  5. 5.
    Kamien RD (2002) The geometry of soft materials: a primer. Rev Mod Phys 74(4):953–971CrossRefGoogle Scholar
  6. 6.
    Iorio A, Sen S (2006) Topological constraints on the charge distributions for the Thomson problem. Phys Rev B 74(5):4. doi: 10.1103/PhysRevB.74.052102 CrossRefGoogle Scholar
  7. 7.
    Taylor R, Walton DRM (1993) The chemistry of fullerenes. Nature 363(6431):685–693CrossRefGoogle Scholar
  8. 8.
    Bausch AR, Bowick MJ, Cacciuto A, Dinsmore AD, Hsu MF, Nelson DR, Nikolaides MG, Travesset A, Weitz DA (2003) Grain boundary scars and spherical crystallography. Science 299(5613):1716–1718CrossRefGoogle Scholar
  9. 9.
    Chushak Y, Travesset A (2005) Solid domains in lipid vesicles and scars. Europhys Lett 72(5):767–773. doi: 10.1209/epl/i2005-10307-8 CrossRefGoogle Scholar
  10. 10.
    Einert T, Lipowsky P, Schilling J, Bowick MJ, Bausch AR (2005) Grain boundary scars on spherical crystals. Langmuir 21(26):12076–12079. doi: 10.1021/la0517383 CrossRefGoogle Scholar
  11. 11.
    Lipowsky P, Bowick MJ, Meinke JH, Nelson DR, Bausch AR (2005) Direct visualization of dislocation dynamics in grain-boundary scars. Nat Mater 4(5):407–411. doi: 10.1038/nmat1376 CrossRefGoogle Scholar
  12. 12.
    Caspar DLD, Klug A (1962) Physical principles in construction of regular viruses. Cold Spring Harbor Symposia on Quantitative Biology 27:1–24Google Scholar
  13. 13.
    Lidmar J, Mirny L, Nelson DR (2003) Virus shapes and buckling transitions in spherical shells. Phys Rev E 68(5):10. doi: 10.1103/PhysRevE.68.051910 CrossRefGoogle Scholar
  14. 14.
    Nelson DA (2003) Spherical crystallography: virus buckling and grain boundary scars. arXiv:cond-mat/0311413v1Google Scholar
  15. 15.
    Sleytr UB, Messner P (1983) Crystalline surface-layers on bacteria. Annu Rev Microbiol 37:311–339CrossRefGoogle Scholar
  16. 16.
    Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182(4):859–868CrossRefGoogle Scholar
  17. 17.
    Thompson DAW (1961) On growth and form. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Haeckel E (2005) Art forms from the ocean: the radiolarian atlas of 1862. Prestel, MunichGoogle Scholar
  19. 19.
    Kirk DL (1998) Volvox: a search for the molecular and genetic origins of multicellularity and cellular differentiation. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Poincaré H (1885) J Math Pures Appl 1:167Google Scholar
  21. 21.
    Mackintosh FC, Lubensky TC (1991) Orientational order, topology, and vesicle shapes. Phys Rev Lett 67(9):1169–1172CrossRefGoogle Scholar
  22. 22.
    Biscari P, Terentjev EM (2006) Nematic membranes: shape instabilities of closed achiral vesicles. Phys Rev E 73(5):6. doi: 10.1103/PhysRevE.73.051706 CrossRefGoogle Scholar
  23. 23.
    Ghim CM, Park JM (2003) Morphology of fluctuating spherical vesicles with internal bond-orientational order. J Phys Condens Matter 15(23):3891–3907CrossRefGoogle Scholar
  24. 24.
    Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137CrossRefGoogle Scholar
  25. 25.
    Schnur JM, Ratna BR, Selinger JV, Singh A, Jyothi G, Easwaran KRK (1994) Diacetylenic lipid tubules—experimental-evidence for a chiral molecular architecture. Science 264(5161):945–947CrossRefGoogle Scholar
  26. 26.
    Selinger JV, Spector MS, Schnur JM (2001) Theory of self-assembled tubules and helical ribbons. J Phys Chem B 105(30):7157–7169CrossRefGoogle Scholar
  27. 27.
    Chen BG, Kamien RD (2009) Nematic films and radially anisotropic Delaunay surfaces. Eur Phys J E 28(3):315–329. doi: 10.1140/epje/i2008-10441-1 CrossRefGoogle Scholar
  28. 28.
    Toquer G, Phou T, Monge S, Grimaldi A, Nobili M, Blanc C (2008) Colloidal shape controlled by molecular adsorption at liquid crystal interfaces. J Phys Chem B 112(14):4157–4160. doi: 10.1021/jp800431y CrossRefGoogle Scholar
  29. 29.
    Lavrentovich OD, Nastishin YA, Kulishov VI, Narkevich YS, Tolochko AS, Shiyanovskii SV (1990) Helical smectic-A. Europhys Lett 13(4):313–318CrossRefGoogle Scholar
  30. 30.
    Lavrentovich OD, Nastishin YA (1984) Division of drops of a liquid-crystal in the case of a cholesteric–smectic-A phase-transition. JETP Lett 40(6):1015–1019Google Scholar
  31. 31.
    Miroshnychenko D, Hill NA, Mottram NJ, Lydon JE (2005) Liquid crystal pre-pattering in mitosis. In: Summer Bioengineering Conference, ColoradoGoogle Scholar
  32. 32.
    Cheng Z, Chaikin PM, Mason TG (2002) Light streak tracking of optically trapped thin microdisks. Phys Rev Lett 89(10):4. doi: 10.1103/PhysRevLett.89.108303 CrossRefGoogle Scholar
  33. 33.
    Xia YN, Gates B, Yin YD, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12(10):693–713CrossRefGoogle Scholar
  34. 34.
    Pieranski P (1983) Colloidal crystals. Contemp Phys 24(1):25–73CrossRefGoogle Scholar
  35. 35.
    Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, van Roij R, van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437(7056):235–240. doi: 10.1038/nature03946 CrossRefGoogle Scholar
  36. 36.
    Nelson DR (2002) Toward a tetravalent chemistry of colloids. Nano Lett 2(10):1125–1129. doi: 10.1021/nl0202096 CrossRefGoogle Scholar
  37. 37.
    DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, Uzun O, Wunsch BH, Stellacci F (2007) Divalent metal nanoparticles. Science 315(5810):358–361. doi: 10.1126/science.1133162 CrossRefGoogle Scholar
  38. 38.
    Arsenault A, Fournier-Bidoz SB, Hatton B, Miguez H, Tetrault N, Vekris E, Wong S, Yang SM, Kitaev V, Ozin GA (2004) Towards the synthetic all-optical computer: science fiction or reality? J Mater Chem 14(5):781–794. doi: 10.1039/b314305h CrossRefGoogle Scholar
  39. 39.
    Doane JW, Vaz NA, Wu BG, Zumer S (1986) Field controlled light-scattering from nematic microdroplets. Appl Phys Lett 48(4):269–271CrossRefGoogle Scholar
  40. 40.
    Jain SC, Rout DK (1991) Electrooptic response of polymer dispersed liquid-crystal films. J Appl Phys 70(11):6988–6992CrossRefGoogle Scholar
  41. 41.
    Zumer S, Doane JW (1986) Light-scattering from a small nematic droplet. Phys Rev A 34(4):3373–3386CrossRefGoogle Scholar
  42. 42.
    Bacchiocchi C, Miglioli I, Arcioni A, Vecchi I, Rai K, Fontecchio A, Zannoni C (2009) Order and dynamics inside H-PDLC nanodroplets: an ESR spin probe study. J Phys Chem B 113(16):5391–5402. doi: 10.1021/jp8105887 CrossRefGoogle Scholar
  43. 43.
    Bunning TJ, Natarajan LV, Tondiglia VP, Sutherland RL, Vezie DL, Adams WW (1996) Morphology of reflection holograms formed in situ using polymer-dispersed liquid crystals. Polymer 37(14):3147–3150CrossRefGoogle Scholar
  44. 44.
    Natarajan LV, Sutherland RL, Tondiglia VP, Bunning TJ, Adams WW (1996) Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals. J Nonlinear Opt Phys Mater 5(1):89–98CrossRefGoogle Scholar
  45. 45.
    Bunning TJ, Natarajan LV, Tondiglia VP, Sutherland RL (2000) Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu Rev Mater Sci 30:83–115CrossRefGoogle Scholar
  46. 46.
    Sutherland RL, Tondiglia VP, Natarajan LV, Bunning TJ, Adams WW (1994) Electrically switchable volume gratings in polymer-dispersed liquid-crystals. Appl Phys Lett 64(9):1074–1076CrossRefGoogle Scholar
  47. 47.
    Amundson K (1996) Electro-optic properties of a polymer-dispersed liquid-crystal film: temperature dependence and phase behavior. Phys Rev E 53(3):2412–2422CrossRefGoogle Scholar
  48. 48.
    Liu YJ, Sun XW, Dai HT, Liu JH, Xu KS (2005) Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings. Opt Mater 27(8):1451–1455. doi: 10.1016/j.optmat.2004.10.010 CrossRefGoogle Scholar
  49. 49.
    Behrens U, Kitzerow HS, Chilaya G (1994) Electrooptic effect in polymer-dispersed cholesteric liquid-crystals with medium chirality. Liq Cryst 17(4):597–603CrossRefGoogle Scholar
  50. 50.
    Penterman R, Klink SL, de Koning H, Nisato G, Broer DJ (2002) Single-substrate liquid-crystal displays by photo-enforced stratification. Nature 417(6884):55–58CrossRefGoogle Scholar
  51. 51.
    Drzaic PS (1995) Liquid crystal dispersions. World Scientific, SingaporeGoogle Scholar
  52. 52.
    Ondriscrawford R, Boyko EP, Wagner BG, Erdmann JH, Zumer S, Doane JW (1991) Microscope textures of nematic droplets in polymer dispersed liquid-crystals. J Appl Phys 69(9):6380–6386CrossRefGoogle Scholar
  53. 53.
    Lavrentovich OD (1998) Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops. Liq Cryst 24(1):117–125Google Scholar
  54. 54.
    Mermin ND (1990) Boojums all the way through: communicating science in a prosaic age. Cambridge University Press, New YorkCrossRefGoogle Scholar
  55. 55.
    Williams RD (1986) Two transitions in tangentially anchored nematic droplets. J Phys Math Gen 19(16):3211–3222CrossRefGoogle Scholar
  56. 56.
    Drzaic PS (1999) A case of mistaken identity: spontaneous formation of twisted bipolar droplets from achiral nematic materials. Liq Cryst 26(5):623–627CrossRefGoogle Scholar
  57. 57.
    Williams C, Pieransk P, Cladis PE (1972) Nonsingular s = +1 screw disclination lines in nematics. Phys Rev Lett 29(2):90–92CrossRefGoogle Scholar
  58. 58.
    Cladis PE, Kleman M (1972) Non-singular disclinations of strength s = +1 in nematics. J Phys 33(5–6):591–598Google Scholar
  59. 59.
    Meyer RB (1973) Existence of even indexed disclinations in nematic liquid-crystals. Philos Mag 27(2):405–424CrossRefGoogle Scholar
  60. 60.
    de Gennes PG, Prost J (2001) The physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  61. 61.
    Lavrentovich OD, Terentiev EM (1986) Phase-transition with the change of symmetry of topological point-defects (Hedgehogs) in a nematic liquid-crystal. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 91(6):2084–2096Google Scholar
  62. 62.
    Rudinger A, Stark H (1999) Twist transition in nematic droplets: a stability analysis. Liq Cryst 26(5):753–758CrossRefGoogle Scholar
  63. 63.
    Finn PL, Cladis PE (1982) Cholesteric blue phases in mixtures and in an electric-field. Mol Cryst Liq Cryst 84(1–4):159–192CrossRefGoogle Scholar
  64. 64.
    Lubensky TC, Pettey D, Currier N, Stark H (1998) Topological defects and interactions in nematic emulsions. Phys Rev E 57(1):610–625CrossRefGoogle Scholar
  65. 65.
    Erdmann JH, Zumer S, Doane JW (1990) Configuration transition in a nematic liquid-crystal confined to a small spherical cavity. Phys Rev Lett 64(16):1907–1910CrossRefGoogle Scholar
  66. 66.
    Prishchepa OO, Shabanov AV, Zyryanov VY (2005) Director configurations in nematic droplets with inhomogeneous boundary conditions. Phys Rev E 72(3):11. doi: 10.1103/PhysRevE.72.031712 CrossRefGoogle Scholar
  67. 67.
    Bezic J, Zumer S (1992) Structures of the cholesteric liquid-crystal droplets with parallel surface anchoring. Liq Cryst 11(4):593–619CrossRefGoogle Scholar
  68. 68.
    Kurik MV, Lavrentovich OD (1982) Negative-positive monopole transitions in cholesteric liquid-crystals. JETP Lett 35(9):444–447Google Scholar
  69. 69.
    Xu F, Crooker PP (1997) Chiral nematic droplets with parallel surface anchoring. Phys Rev E 56(6):6853–6860CrossRefGoogle Scholar
  70. 70.
    Schwinge J (1969) A magnetic model of matter. Science 165(3895):757–761CrossRefGoogle Scholar
  71. 71.
    Dirac PAM (1931) Quantised singularities in the electromagnetic field. Proc R soc Lond A Contain Pap Math Phys Character 133(821):60–72CrossRefGoogle Scholar
  72. 72.
    Volovik GE (1979) Large-scale continuous theory of cholesterics. Jetp Lett 29(6):322–325Google Scholar
  73. 73.
    Candau S, Leroy P, Debeauva F (1973) Magnetic-field effects in nematic and cholesteric droplets suspended in an isotropic liquid. Mol Cryst Liq Cryst 23(3-4):283–297CrossRefGoogle Scholar
  74. 74.
    Lavrentovich OD (1986) Hierarchy of defects on filling up of space by flexible smectic-a layers. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 91(5):1666–1676Google Scholar
  75. 75.
    Blanc C, Kleman M (2001) The confinement of smectics with a strong anchoring. Eur Phys J E 4(2):241–251CrossRefGoogle Scholar
  76. 76.
    Volovik GE, Lavrentovich OD (1983) The topological dynamics of defects—boojums in nematic drops. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 85(6):1997–2010Google Scholar
  77. 77.
    Prishchepa OO, Shabanov AV, Zyrvanov VY (2004) Transformation of director configuration upon changing boundary conditions in droplets of nematic liquid crystal. JETP Lett 79:5Google Scholar
  78. 78.
    Zyryanov VY, Krakhalev MN, Prishchepa OO (2008) Texture transformation in nematic droplets caused by ionic modification of boundary conditions. Mol Cryst Liq Cryst 489:273–279. doi: 10.1080/15421400802219189 CrossRefGoogle Scholar
  79. 79.
    Amundson KR, Srinivasarao M (1998) Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation. Phys Rev E 58(2):R1211–R1214CrossRefGoogle Scholar
  80. 80.
    Gupta VK, Skaife JJ, Dubrovsky TB, Abbott NL (1998) Optical amplification of ligand-receptor binding using liquid crystals. Science 279(5359):2077–2080CrossRefGoogle Scholar
  81. 81.
    Shah RR, Abbott NL (2001) Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science 293(5533):1296–1299CrossRefGoogle Scholar
  82. 82.
    Brake JM, Abbott NL (2007) Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces. Langmuir 23(16):8497–8507. doi: 10.1021/la0634286 CrossRefGoogle Scholar
  83. 83.
    Sivakumar S, Wark KL, Gupta JK, Abbott NL, Caruso F (2009) Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv Funct Mater 19(14):2260–2265. doi: 10.1002/adfm.200900399 CrossRefGoogle Scholar
  84. 84.
    Yang DK, Crooker PP (1991) Field-induced textures of polymer-dispersed chiral liquid-crystal microdroplets. Liquid Cryst 9(2):245–251CrossRefGoogle Scholar
  85. 85.
    Chan PK, Rey AD (1997) Simulation of reorientation dynamics in bipolar nematic droplets. Liq Cryst 23(5):677–688CrossRefGoogle Scholar
  86. 86.
    Fernandez-Nieves A, Link DR, Rudhardt D, Weitz DA (2004) Electro-optics of bipolar nematic liquid crystal droplets. Phys Rev Lett 92(10):4. doi: 10.1103/PhysRevLett.92.105503 CrossRefGoogle Scholar
  87. 87.
    Ren H, Lee SH, Wu ST (2009) Reconfigurable liquid crystal droplets using a dielectric force. Appl Phys Lett 95(24):3. doi: 10.1063/1.3275795 CrossRefGoogle Scholar
  88. 88.
    Drzaic PS (1988) Reorientation dynamics of polymer dispersed nematic liquid-crystal films. Liq Cryst 3(11):1543–1559CrossRefGoogle Scholar
  89. 89.
    Doane JW, Golemme A, West JL, Whitehead JB, Wu BG (1988) Polymer dispersed liquid-crystals for display application. Mol Cryst Liq Cryst 165:511–532CrossRefGoogle Scholar
  90. 90.
    Akbarzadeh V, Lohi A, Chan PK, Upreti SR (2010) Behavior of nematic bipolar droplets in PDLC films: an optimization study. Macromol Theory Simul 19(2–3):81–87Google Scholar
  91. 91.
    Kitzerow HS (1994) Polymer-dispersed liquid-crystals—from the nematic curvilinear aligned phase to ferroelectric-films. Liq Cryst 16(1):1–31CrossRefGoogle Scholar
  92. 92.
    Belotsky ED, Kovalchuk AV, Lavrentovich OD, Lev BI, Sergan VV (1990) Low-frequency mutual transformations of the nematic drop structure in the constant electric-field. Ukr Fiz Zh 35(6):888–895Google Scholar
  93. 93.
    Meyer RB (1969) Piezoelectric effects in liquid crystals. Phys Rev Lett 22(18):918–921CrossRefGoogle Scholar
  94. 94.
    de Gennes PG (1970) Comptes rendus des séances de l’Académie des sciences. Series B 271:469Google Scholar
  95. 95.
    Lavrentovich OD (1988) Flexoelectricity of droplets of a nematic liquid crystal. Sov Tech Phys Lett 14:4Google Scholar
  96. 96.
    Todorova L, Angelov T, Marinov Y, Petrov AG (2003) Evidence of flexoelectricity in polymer-dispersed liquid crystals. J Mater Sci Mater Electron 14(10–12):817–818CrossRefGoogle Scholar
  97. 97.
    Kovalchuk AV, Kurik MV, Lavrentovich OD, Sergan VV (1988) Structural transformations in nematic drops located in an external electric-field. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 94(5):350–364Google Scholar
  98. 98.
    Xu F, Kitzerow HS, Crooker PP (1992) Electric-field effects on nematic droplets with negative dielectric anisotropy. Phys Rev A 46(10):6535–6540CrossRefGoogle Scholar
  99. 99.
    Bodnar VG, Lavrentovich OD, Pergamenshchik VM (1992) The threshold for the hedgehog-ring structural transition in nematic drops in an alternating electric-field. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 101(1):111–125Google Scholar
  100. 100.
    Xie AF, Higgins DA (2004) Electric-field-induced dynamics in radial liquid crystal droplets studied by multiphoton-excited fluorescence microscopy. Appl Phys Lett 84(20):4014–4016. doi: 10.1063/1.1748846 CrossRefGoogle Scholar
  101. 101.
    Fernandez-Nieves A, Link DR, Marquez M, Weitz DA (2007) Topological changes in bipolar nematic droplets under flow. Phys Rev Lett 98(8):4. doi: 10.1103/PhysRevLett.98.087801 CrossRefGoogle Scholar
  102. 102.
    Landau LD, Lifshitz EM (1987) In: Sykes JB, Reid WH (eds) Fluid mechanics (trans), vol 6, 2nd edn. Pergamon, OxfordGoogle Scholar
  103. 103.
    Ignes-Mullol J, Claret J, Albalat R, Crusats J, Reigada R, Romero MTM, Sagues F (2005) Texture changes inside smectic-C droplets in azobenzene langmuir monolayers. Langmuir 21(7):2948–2955. doi: 10.1021/la0473557 CrossRefGoogle Scholar
  104. 104.
    Madhusudana NV, Pratibha R (1982) Elasticity and orientational order in some cyanobiphenyls. 4. Reanalysis of the data. Mol Cryst Liq Cryst 89(1–4):249–257CrossRefGoogle Scholar
  105. 105.
    Lavrentovich OD (1986) Hyperbolic monopole in a smectic C liquid-crystal. JETP Lett 43(6):382–385Google Scholar
  106. 106.
    Poulin P, Stark H, Lubensky TC, Weitz DA (1997) Novel colloidal interactions in anisotropic fluids. Science 275(5307):1770–1773CrossRefGoogle Scholar
  107. 107.
    Poulin P, Weitz DA (1998) Inverted and multiple nematic emulsions. Phys Rev E 57(1):626–637CrossRefGoogle Scholar
  108. 108.
    Vitelli V, Nelson DR (2006) Nematic textures in spherical shells. Phys Rev E 74(2):18. doi: 10.1103/PhysRevE.74.021711 CrossRefGoogle Scholar
  109. 109.
    Fernandez-Nieves A, Vitelli V, Utada AS, Link DR, Marquez M, Nelson DR, Weitz DA (2007) Novel defect structures in nematic liquid crystal shells. Phys Rev Lett 99(15):4. doi: 10.1103/PhysRevLett.99.157801 CrossRefGoogle Scholar
  110. 110.
    Stark H (2001) Physics of colloidal dispersions in nematic liquid crystals. Phys Rep Rev Sect Phys Lett 351(6):387–474Google Scholar
  111. 111.
    Lubensky TC, Prost J (1992) Orientational order and vesicle shape. J Phys II 2(3):371–382CrossRefGoogle Scholar
  112. 112.
    Bates MA (2008) Nematic ordering and defects on the surface of a sphere: a Monte Carlo simulation study. J Chem Phys 128(10):4. doi: 10.1063/1.2890724 CrossRefGoogle Scholar
  113. 113.
    Shin H, Bowick MJ, Xing XJ (2008) Topological defects in spherical nematics. Phys Rev Lett 101(3):4. doi: 10.1103/PhysRevLett.101.037802 CrossRefGoogle Scholar
  114. 114.
    Skacej G, Zannoni C (2008) Controlling surface defect valence in colloids. Phys Rev Lett 100(19):4. doi: 10.1103/PhysRevLett.100.197802 CrossRefGoogle Scholar
  115. 115.
    Bates MA, Skacej G, Zannoni C (2010) Defects and ordering in nematic coatings on uniaxial and biaxial colloids. Soft Matter 6(3):655–663. doi: 10.1039/b917180k CrossRefGoogle Scholar
  116. 116.
    Lopez-Leon T, Fernandez-Nieves A (2009) Topological transformations in bipolar shells of nematic liquid crystals. Phys Rev E 79(2):5. doi: 10.1103/PhysRevE.79.021707 CrossRefGoogle Scholar
  117. 117.
    Chuang I, Durrer R, Turok N, Yurke B (1991) Cosmology in the laboratory—defect dynamics in liquid-crystals. Science 251(4999):1336–1342CrossRefGoogle Scholar
  118. 118.
    Pairam E, Fernandez-Nieves A (2009) Generation and stability of toroidal droplets in a viscous liquid. Phys Rev Lett 102(23):4. doi: 10.1103/PhysRevLett.102.234501 CrossRefGoogle Scholar
  119. 119.
    Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100:503–546CrossRefGoogle Scholar
  120. 120.
    Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298(5595):1006–1009CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations