Skip to main content
Log in

Bile salt structural effect on the thermodynamic properties of a catanionic mixed adsorbed monolayer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interfacial effects of two bile salts (sodium deoxycholate (NaDC) and sodium dehydrocholate (NaDHC)) in a catanionic mixed adsorbed monolayer have been investigated at 25 °C. The surfactant interfacial composition, the interfacial orientation of the molecules and the energy changes are analysed to show a thermodynamic evidence of the hydrophobic BSs effect during its intercalation into interfacial adsorbed didodecyldimethyl ammonium bromide (DDAB) molecules. Both mixed systems (NaDC–DDAB and NaDHC–DDAB) have analogous adsorption efficiencies, which are similar from a pure DDAB monolayer and superior to that obtained for both bile salts molecules. Nevertheless, their adsorption effectiveness is different: NaDC causes an increment of Γ while NaDHC produces the opposite effect. The adsorption efficiency in surface tension reduction is due to the existence of interfacial synergistic interactions (confirmed by the analysis of β γ and ΔG ad 0 values). Maximum synergistic interaction is seen for α BSs = 0.4. The hydrophobic steroid backbone of NaDHC molecule presents a deep interfacial penetration than NaDC. This fact causes a great disturbance of DDAB hydrocarbon tails and conduces to a large separation of molecules (high A m values) which explains the reduction of adsorption effectiveness (low Γ m values).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Radulovic J, Sefiane K, Shanahan MER (2009) Investigation of spreading of surfactant mixtures. Chem Eng Sci 64(14):3227–3235, and references therein

    Article  CAS  Google Scholar 

  2. Zhang L, Luo L, Zhao S, Yu J (2002) Studies of synergism/antagonism for lowering dynamic interfacial tensions in surfactant/alkali/acidic oil systems, part 2: synergism/antagonism in binary surfactant mixtures. J Colloid Interface Sci 251(1):166–171

    Article  CAS  Google Scholar 

  3. Tondre C, Caillet C (2001) Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis. Adv Colloid Interface Sci 93:115–134

    Article  CAS  Google Scholar 

  4. Knauf K, Meister A, Kerth A, Blume A (2010) Interaction of alkyltrimethylammonium bromides with DMPC-d54 and DMPG-d54 monolayers studied by infrared reflection absorption spectroscopy (IRRAS). J Colloid Interface Sci 342:243–252, and references therein

    Article  CAS  Google Scholar 

  5. Dias R, Antunes F, Miguel M, Lindman S, Lindman B (2002) DNA-lipid systems. A physical chemistry study. Braz J Med Biol Res 35:509–522

    Article  CAS  Google Scholar 

  6. Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329:793–799

    Article  CAS  Google Scholar 

  7. Blume A, Garidel P (1999) From macromolecules to man. In: Kemp RB (ed) The handbook of thermal analysis and calorimetry, vol. 4, 1st edn. Elsevier, Amsterdam, p 109, chapter 4

    Google Scholar 

  8. Janoff AS (1999) Liposomes. In: Janoff AS (ed) Rational design. Marcel Dekker, New York

    Google Scholar 

  9. Madenci D, Egelhaaf SU (2010) Self-assembly in aqueous bile salt solutions. Curr Opin Colloid Interface Sci 15(1–2):109–115

    Article  CAS  Google Scholar 

  10. Trauner M, Boyer JL (2003) Bile salts transporters: molecular characterization, function and regulation. Physiol Rev 83:633–671

    CAS  Google Scholar 

  11. Mukhopadhyay S, Maitra U (2007) Chemistry and biology of bile acids. Curr Sci 87(12):1666–1682

    Google Scholar 

  12. Baskin R, Frost LD (2008) Bile salt–phospholipid aggregation at submicellar concentrations. Colloids Surf, B 62(2):238–242

    Article  CAS  Google Scholar 

  13. Tung S-H, Huang Y-E, Raghavan SR (2007) A new wormlike micellar system: mixture of bile salt and lecithin in organic liquids. J Am Chem Soc 128:5751–5756

    Article  Google Scholar 

  14. Nonomura Y, Nakayama K, Aoki Y, Fujimori A (2009) Phase behavior of bile acid/lipid/water systems containing model dietary lipids. J Colloid Interface Sci 339(1):222–229

    Article  CAS  Google Scholar 

  15. Youssry M, Coppola L, Marques EF, Nicotera I (2008) Unravelling micellar structures and dynamic in an unusually extensive DDAB/bile salt catanionic solution by rheology and NMR-diffusometry. J Colloid Interface Sci 324:192–198

    Article  CAS  Google Scholar 

  16. Guimarães RS, Moutinho C, Pereira E, de Castro B, Gameiro P, Lima JLFC (2007) β-Blockers and benzodiazepines location in SDS and bile salt micellar systems: an ESR study. J Pharm Biomed Anal 45(1):62–69

    Article  Google Scholar 

  17. Marques EF, Regev O, Edlund H, Khan A (2000) Micelles, dispersions, and liquid crystals in the catanionic mixture bile salt-double-chained surfactant. The bile salt-rich area. Langmuir 16:8255–8262

    Article  CAS  Google Scholar 

  18. Swanson-Vethamuthu M, Almgren M, Mukhtar E, Bahadur P (1992) Fluorescence quenching studies of the aggregation behavior of the mixed micelles of bile salts and cetyltrimethylammonium halides. Langmuir 8:2396–2404

    Article  Google Scholar 

  19. Swanson-Vethamuthu M, Almgren M, Brown W, Mukhtar E (1995) Aggregate Structure, gelling, and coacervation within the l1 phase of the quasi-ternary system alkyltrimethylammonium bromide-sodium desoxycholate-water. J Colloid Interface Sci 174(2):461–479

    Article  Google Scholar 

  20. Swanson-Vethamuthu M, Almgren M, Bergenståhl B, Mukhtar E (1996) The hexagonal phase and cylindrical micelles in the system alkyltrimethylammonium bromide–sodium desoxycholate–water as studied by X-ray diffraction and fluorescence. Colloid Interface Sci 178(2):538–548

    Article  Google Scholar 

  21. Swanson-Vethamuthu M, Almgren M, Karlsson G, Bahadur P (1996) Effect of sodium chloride and varied alkyl chain length on aqueous cationic surfactant–bile salt systems. Cryo-TEM and fluorescence quenching studies. Langmuir 12(9):2173–2185

    Article  CAS  Google Scholar 

  22. Swanson-Vethamuthu M, Almgren M, Hansson P, Zhao J (1996) Surface tension studies of cetyltrimethylammonium bromide-bile salt association. Langmuir 12:2186–2189

    Article  CAS  Google Scholar 

  23. Heuman DM, Mills AS, McCall J, Hylemon PB, Pandak WM, Vlahcevic ZR (1991) Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. In vivo studies in the rat. Gastroenterology 100(1):203–211

    CAS  Google Scholar 

  24. Messina P, Fernández-Leyes M, Prieto G, Ruso JM, Sarmiento F, Schulz PC (2008) Spread mixed monolayers of deoxycholic and dehydrocholic acids at the air–water interface, effect of subphase pH. Characterization by axisymmetricdrop shape analysis. Biophys Chem 132:39–46

    Article  CAS  Google Scholar 

  25. Fernández-Leyes M, Messina P, Schulz PC (2008) pH and surface tension dependence of mixed sodium deoxycholate–sodium dehydrocholate pre-micellar aggregation in aqueous solution. Colloids Surf, A Physicochem Eng Asp 329:24–30

    Article  Google Scholar 

  26. Fernández-Leyes M, Messina P, Schulz PC (2007) Aqueous sodium dehydrocholate–sodium deoxycholate mixtures at low concentration, J. Colloid Interface Sci 314:659–664

    Article  Google Scholar 

  27. Taylor JR (1982) An introduction to error analysis. The study of uncertainties in physical measurements. University Science Books, Mill Valley, CA

    Google Scholar 

  28. Rosen JM (2004) Surfactants and interfacial phenomena. Wiley, New York

    Book  Google Scholar 

  29. Adamson AW (1990) Physical chemistry of surfaces, 5th edn. Wiley, New York, pp 53–101

    Google Scholar 

  30. Clint JH (1992) Surfactant aggregation. Chapman and Hall, New York, Chapter 2

    Google Scholar 

  31. Hua XY, Rosen MJ (1982) Calculation of the coefficient in the gibbs equation for the adsorption of ionic surfactants from aqueous binary mixtures with nonionic surfactants. J Colloid Interface Sci 87:469–477

    Article  CAS  Google Scholar 

  32. Rubingh DN (1979) In: Mital K (ed) Solution chemistry of surfactants. Plenum, New York, p 337

    Google Scholar 

  33. Rosen JM, Aronson S (1981) Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration. Colloid Surf 3:201–208

    Article  CAS  Google Scholar 

  34. Szymczyk K, Jaczuk B (2007) The properties of a binary mixture of nonionic surfactants in water at the water/air interface. Langmuir 23(9):4972–4981

    Article  CAS  Google Scholar 

  35. Messina PV, Prieto G, Ruso JM, Fernández-Leyes MD, Schulz PC, Sarmiento F (2010) Thermodynamic and elastic fluctuation analysis of langmuir mixed monolayers composed by dehydrocholic acid (HDHC) and didodecyldimethylammonium bromide (DDAB). Colloid Surf B: Biointerfaces 75(1):34–41

    Article  CAS  Google Scholar 

  36. Messina PV, Ruso JM, Prieto G, Fernadez-Leyes M, Schulz P, Sarmiento F (2010) Ca2+ and Mg2+ induced molecular interactions in a dehydrocholic acid: didodecyldimethylammonium bromide mixed monolayer. Colloid Polym Sci 288:449–459

    Article  CAS  Google Scholar 

  37. Hato M, Minamikawa H, Okamoto K (1993) Monolayers of ω-Hydroxyalkyldimethyloctadecylammonium bromide at water-air interface. J Colloid Interface Sci 161(1):155–162

    Article  CAS  Google Scholar 

  38. Lu JR, Simister EA, Thomas RK, Penfold J (1993) Adsorption of alkyltrimethyl ammonium bromide at the air-water interface. Prog Colloid Polym Sci 93:92–97

    Article  CAS  Google Scholar 

  39. Messina P, Morini MA, Schulz PC (2003) The hydration of sodium dehydrocholate micelles. Colloid Polym Sci 281(7):695–698

    Article  CAS  Google Scholar 

  40. Garidel P, Hildebrand A, Neubert R, Blume A (2000) Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir 16:5267–5275

    Article  Google Scholar 

  41. Schulz PC, Messina P, Morini MA, Vuano B (2002) Potentiometric studies on sodium dehydrocholate micelles. Colloid Polym Sci 280(12):1104–1109

    Article  CAS  Google Scholar 

  42. Gaines GL (1966) Insoluble monolayers at liquid gas interfaces. Wiley, New York

    Google Scholar 

  43. Gonzáles-Caballero F, Kerkeb ML (1994) Synergism at a liquid-solid interface. Adsorption of binary mixtures of bile salts onto a cholesterol surface. Langmuir 10:1268–1273

    Article  Google Scholar 

  44. Motomura K, Yamanaka M, Aratono M (1984) Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym Sci 262(12):948–955

    Article  CAS  Google Scholar 

  45. Small DM (1971) In: Nair PP, Kritchevsky D (eds) Bile acids, vol. 1. Plenum, New York, pp 249–356

    Google Scholar 

  46. Jańczuk B, Méndez-Sierra JA, González-Martín ML, Bruque JB, Wójcik W (1997) Properties of decylammonium chloride and cesium perfluorooctanoate at interfaces and standard free energy of their adsorption. J Colloid Interface Sci 192:408–414

    Article  Google Scholar 

  47. Jańczuk B, Méndez-Sierra JA, González-Martín ML, Bruque JB, Wójcik W (1996) Decylammonium chloride and cesium perfluorooctanoate surface free energy and their critical micelle concentration. J Colloid Interface Sci 184:607–613

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Universidad Nacional del Sur, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Concejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET). PM is an adjunct researcher of (CONICET). MFL has a fellowship of the CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula V. Messina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Leyes, M.D., Messina, P.V. & Schulz, P.C. Bile salt structural effect on the thermodynamic properties of a catanionic mixed adsorbed monolayer. Colloid Polym Sci 289, 179–191 (2011). https://doi.org/10.1007/s00396-010-2336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2336-1

Keywords

Navigation