Advertisement

Colloid and Polymer Science

, Volume 289, Issue 5–6, pp 659–666 | Cite as

Controlling biotinylation of microgels and modeling streptavidin uptake

  • Yaqin Xu
  • Lizanne Pharand
  • Quan Wen
  • Ferdinand Gonzaga
  • Yingfu Li
  • M. Monsur Ali
  • Carlos D. M. Filipe
  • Robert PeltonEmail author
Original Contribution

Abstract

Compared are two approaches for the biotinylation of poly(N-isopropylacrylamide-co-vinylacetic acid) microgels, 300-nm diameter, water swollen particles with a corona of carboxyl groups. The biotinylated microgels are a platform for bioactive water-based ink. Streptavidin binding was measured as a function of biotin density, and the results were interpreted with a new model that predicts the minimum local density of biotins required to capture a streptavidin. An amino-polyethylene glycol derivative of biotin gave higher biotin contents than a biotin hydrazide. However, the streptavidin content versus biotin content results for both biotin derivatives fell on the same master curve with maximum biotin coverage of 0.11 mg of bound streptavidin per milligram of biotinylated microgel. Exclusion experiments showed that streptavidin was too big to penetrate the cross-linked microgel structure; thus, the conjugated streptavidin was restricted to the microgel surface. The colloidal stability of the microgels was preserved, and the biotinylated products showed good hydrolytic stability.

Keywords

Microgel Biotinylation Bioconjugation Modeling 

Notes

Acknowledgments

Prof. Todd Hoare is thanked for useful discussions. The authors acknowledge the SENTINEL Bioactive Paper NSERC Network for financial support. RP and YL hold Canada Research Chairs.

References

  1. 1.
    Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Hydrogel microspheres.3. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym Sci 270(1):53–57CrossRefGoogle Scholar
  2. 2.
    Pichot C (2004) Surface-functionalized latexes for biotechnological applications. Curr Opin Colloid Interface Sci 9(3–4):213–221CrossRefGoogle Scholar
  3. 3.
    Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20(3):247–256CrossRefGoogle Scholar
  4. 4.
    Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85(1):1–33CrossRefGoogle Scholar
  5. 5.
    Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44(47):7686–7708CrossRefGoogle Scholar
  6. 6.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477. doi: 10.1016/j.progpolymsci.2008.01.002 CrossRefGoogle Scholar
  7. 7.
    Hoare T, Pelton R (2008) Impact of microgel morphology on functionalized microgel–drug interactions. Langmuir 24(24):1005–1012CrossRefGoogle Scholar
  8. 8.
    Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142CrossRefGoogle Scholar
  9. 9.
    Kawaguchi H, Kisara K, Takahashi T, Achiha K, Yasui M, Fujimoto K (2000) Versatility of thermosensitive particles. Macromol Symp 151:591–598CrossRefGoogle Scholar
  10. 10.
    Taniguchi T, Duracher D, Delair T, Elaissari A, Pichot C (2003) Adsorption/desorption behavior and covalent grafting of an antibody onto cationic amino-functionalized poly(styrene-N-isopropylacrylamide) core–shell latex particles. Colloids Surf B Biointerfaces 29(1):53–65CrossRefGoogle Scholar
  11. 11.
    Colonne M, Chen Y, Wu K, Freiberg S, Giasson S, Zhu XX (2007) Binding of streptavidin with biotinylated thermosensitive nanospheres based on poly(N,N-diethylacrylamide-co-2-hydroxyethyl methacrylate). Bioconjug Chem 18(3):999–1003CrossRefGoogle Scholar
  12. 12.
    Hong C-Y, Pan C-Y (2006) Direct synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by raft polymerization using biotinylated trithiocarbonate as raft agent. Macromolecules 39(10):3517–3524. doi: 10.1021/ma052593+ CrossRefGoogle Scholar
  13. 13.
    Sirpal S, Gattas-Asfura KM, Leblanc RM (2007) A photodimerization approach to crosslink and functionalize microgels. Colloids Surf B Biointerfaces 58(2):116–120CrossRefGoogle Scholar
  14. 14.
    Su S, Ali MM, Filipe CDM, Li Y, Pelton R (2008) Microgel-based inks for paper-supported biosensing applications. Biomacromolecules 9(3):935–941CrossRefGoogle Scholar
  15. 15.
    Pelton R (2009) Bioactive paper—a low cost platform for diagnostics. Trends Anal Chem 28(8):925–942CrossRefGoogle Scholar
  16. 16.
    Hoare T, McLean D (2006) Kinetic prediction of functional group distributions in thermosensitive microgels. J Phys Chem B 110(41):20327–20336CrossRefGoogle Scholar
  17. 17.
    Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20(6):2123–2133CrossRefGoogle Scholar
  18. 18.
    Debord JD, Lyon LA (2007) On the unusual stability of succinimidyl esters in pNIPAm-AAc microgels. Bioconjug Chem 18(2):601–604CrossRefGoogle Scholar
  19. 19.
    Hermanson GT (1996) Bioconjugate techniques. Academic, San DiegoGoogle Scholar
  20. 20.
    Prestwich G, Marecak D, Marecek J, Vercruysse K, Ziebell M (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53(1–3):93–103CrossRefGoogle Scholar
  21. 21.
    Kremsky J, Wooters J, Dougherty J, Meyers R, Collins M, Brown E (1987) Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5′ terminus. Nucleic Acids Res 15(7):2891CrossRefGoogle Scholar
  22. 22.
    Yang M, Teeuwen RLM, Giesbers M, Baggerman J, Arafat A, de Wolf FA, van Hest JCM, Zuilhof H (2008) One-step photochemical attachment of NHS-terminated monolayers onto silicon surfaces and subsequent functionalization. Langmuir 24(15):7931–7938. doi: 10.1021/la800462u CrossRefGoogle Scholar
  23. 23.
    Nayak S, Lyon LA (2004) Ligand-functionalized core/shell microgels with permselective shells. Angew Chem Int Ed 43(48):6706–6709CrossRefGoogle Scholar
  24. 24.
    Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550CrossRefGoogle Scholar
  25. 25.
    McCormick D, Roth J (1970) Specificity, stereochemistry, and mechanism of the color reaction between p-dimethylaminocinnamaldehyde and biotin analogs. Anal Biochem 34(1):226–236CrossRefGoogle Scholar
  26. 26.
    Ahmed J, Verma K (1979) Determination of d-biotin at the microgram level. Talanta 26(11):1025CrossRefGoogle Scholar
  27. 27.
    Hoare T, Pelton R (2006) Dimensionless plot analysis: a new way to analyze functionalized microgels. J Colloid Interface Sci 303(1):109–116CrossRefGoogle Scholar
  28. 28.
    Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous-media. Bioconjug Chem 6(1):123–130CrossRefGoogle Scholar
  29. 29.
    Kurzban GP, Bayer EA, Wilchek M, Horowitz PM (1991) The quaternary structure of streptavidin in urea. J Biol Chem 266(22):14470–14477Google Scholar
  30. 30.
    Ren CL, Carvajal D, Shull KR, Szleifer I (2009) Streptavidin–biotin binding in the presence of a polymer spacer. A theoretical description. Langmuir 25(20):12283–12292. doi: 10.1021/la901735d CrossRefGoogle Scholar
  31. 31.
    Bogusiewicz A, Mock NI, Mock DM (2004) Instability of the biotin–protein bond in human plasma. Anal Biochem 327(2):156–161. doi: 10.1016/j.ab.2004.01.011 CrossRefGoogle Scholar
  32. 32.
    Bogusiewcz A, Mock NI, Mock DM (2004) Release of biotin from biotinylated proteins occurs enzymatically and nonenzymatically in human plasma. Anal Biochem 331(2):260–266. doi: 10.1016/j.ab.2004.05.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yaqin Xu
    • 1
  • Lizanne Pharand
    • 1
  • Quan Wen
    • 1
  • Ferdinand Gonzaga
    • 2
  • Yingfu Li
    • 2
  • M. Monsur Ali
    • 2
  • Carlos D. M. Filipe
    • 1
  • Robert Pelton
    • 1
    Email author
  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations