Advertisement

Colloid and Polymer Science

, Volume 288, Issue 18, pp 1739–1744 | Cite as

Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles

  • Fenghua Liu
  • Gaojie Xu
  • Jinghua Wu
  • Yuchuan Cheng
  • Jianjun Guo
  • Ping Cui
Short Communication

Abstract

A kind of titanium oxide nanoparticles modified with varying amounts of oxalate group was prepared using a modified hydrolysis method. The microstructure, dielectric properties, and electrorheological (ER) performance were investigated. The results indicate that the oxalate group can effectively improve the dielectric properties and surface polarizability of the particles, and the ER performance of modified titanium oxide-based ER fluid is much higher than that of pure titanium oxide-based ER fluid. The shear stress of suitable oxalate group-modified amorphous titanium oxide-based ER fluid with a volume fraction of 30% reaches 47.5 kPa at E = 5 kV/mm, and the current density is less than 18 μAcm−2. The yield stress can be up to 114 kPa at E = 5 kV/mm with a volume fraction of 40%.

Keywords

Electrorheological fluid Dielectric property Titanium oxide Oxalate group Shear stress 

Notes

Acknowledgments

This research is supported by the National Basic Research Program of China (Grant No. 2009CB930801), the National Natural Science Foundation of China (Grant No. 10904155 and 21003145), the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2.YW.M07), the CAS/SAFEA International Partnership Program for Creative Research Teams, and by Zhejiang Provincial Natural Science Foundation of China (Grant No. D4080489 and Y4090044), Ningbo Natural Science Foundation (2009A610031, 2010A610170). We also express our gratitude to the aided program for Science and Technology Innovative Research Team of zhejiang Province and Ningbo Municipality (2009B21005).

References

  1. 1.
    Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140CrossRefGoogle Scholar
  2. 2.
    Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661–1667CrossRefGoogle Scholar
  3. 3.
    Halsey TC (1992) Electrorheological fluids. Science 258:761–766CrossRefGoogle Scholar
  4. 4.
    Hao T (2001) Electrorheological Fluids. Adv Mater 13:1847–1857CrossRefGoogle Scholar
  5. 5.
    Wang BX, Zhao XP (2003) Preparation of kaolinite/titania coated nanocomposite particles and their electrorheological properties. J Mater Chem 13:2248–2253CrossRefGoogle Scholar
  6. 6.
    Kim JW, Cho YH, Lee HG, Choi SB (2002) Electrorheological semi-active damper: Polyaniline based ER system. J Intell Mater Syst Struct 13:509–513CrossRefGoogle Scholar
  7. 7.
    Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: Size effect. Langmuir 19:5875–5881CrossRefGoogle Scholar
  8. 8.
    Choi HJ, Lee YH, Kim CA, Jhon MS (2000) Microencapsulated polyaniline particles for electrorheological materials. J Mater Sci Lett 19:533–535CrossRefGoogle Scholar
  9. 9.
    Sim IS, Kim JW, Choi HJ, Kim CA, Jhon MS (2001) Preparation and electrorheological characteristics of poly(p-phenylene)-based suspensions. Chem Mater 13:1243–1247CrossRefGoogle Scholar
  10. 10.
    Block H, Kelly JP, Qin A, Wastson T (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14CrossRefGoogle Scholar
  11. 11.
    Wen WJ, Huang XX, Yang SH, Lu KQ, Sheng P (2003) The giant electrorheological effect in suspensions of nanoparticles. Nat matters 2:727–730CrossRefGoogle Scholar
  12. 12.
    Xiang LQ, Zhao XP (2003) Electrorheological activity of a composite of titania-coated montmorillonite. J Mater Chem 13:1529–1532CrossRefGoogle Scholar
  13. 13.
    Zhao XP, Duan X (2002) In situ sol-gel preparation of polysaccharide/titanium oxide hybrid colloids and their electrorheological effect. J Colloid Interface Sci 251:376–380CrossRefGoogle Scholar
  14. 14.
    Lim YT, Park JH, Park OO (2002) Improved electrorheological effect in polyaniline nanocomposite suspensions. J Colloid Interface Sci 245:198–203CrossRefGoogle Scholar
  15. 15.
    Yoon DJ, Kim YD (2006) Synthesis and electrorheological behavior of sterically stabilized polypyrrole-silica-methylcellulose nanocomposite suspension. J Colloid Interface Sci 303:573–578CrossRefGoogle Scholar
  16. 16.
    Hao T (2002) Electrorheological suspensions. J Colloid Interface Sci 97:1–35CrossRefGoogle Scholar
  17. 17.
    Espin MJ, Płocharski J (2007) Effect of pollution on the interfacial properties of electrorheological fluids Colloids Surf. A: Physicochem. Eng Aspects 306:126–136CrossRefGoogle Scholar
  18. 18.
    Lu KQ, Shen R, Wang XZ, Sun G, Wen WJ, Liu JX (2006) Polar molecule dominated electrorheological effect. Chin Phys 15:2476–2480CrossRefGoogle Scholar
  19. 19.
    Tsuda K, Hirose Y, Ogura H, Otsubo Y (2008) Effect of electric fields on the surface profiles of electrorheological suspensions Colloids Surf. A: Physicochem. Eng Aspects 324:228–233CrossRefGoogle Scholar
  20. 20.
    Sheng P (2005) Mechanism of the giant electrorheological effect. Int J Mod Phys B 19:1157–1162CrossRefGoogle Scholar
  21. 21.
    Cao JG, Shen M, Zhou LW (2006) Preparation and electrorheological properties of triethanolamine modified TiO2. J Solid State Chem 179:1565–1568CrossRefGoogle Scholar
  22. 22.
    Wei JH, Zhao LH, Peng SL, Shi J, Liu ZY, Wen WJ (2008) Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects 47:311–315Google Scholar
  23. 23.
    Sheng DY (2001) The Introduction to the Fourier Transform Infrared Spectrum. Chemical Engineering Press, BeijingGoogle Scholar
  24. 24.
    Davis LD (1992) Polarization forces and conductivity effects in electrorheological fluids. J Appl Phys 72:1334–1340CrossRefGoogle Scholar
  25. 25.
    Ikzaki F, Kawai A, Uchida K, Kawakami T, Edmura K, Sakurai K, Anzai H, Asako Y (1998) Mechanisms of electrorheology: the effect of the dielectric property. J Phys D 31:336–347CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fenghua Liu
    • 1
  • Gaojie Xu
    • 1
  • Jinghua Wu
    • 1
  • Yuchuan Cheng
    • 1
  • Jianjun Guo
    • 1
  • Ping Cui
    • 1
  1. 1.Ningbo Institute of Material Technology and Engineering (NIMTE)Chinese Academy of Sciences (CAS)NingboPeople’s Republic of China

Personalised recommendations