Colloid and Polymer Science

, Volume 288, Issue 10–11, pp 1121–1130 | Cite as

Characterization of complexation and phase behavior of mixed systems of unmodified and hydrophobically modified oppositely charged polyelectrolytes

  • Neda BeheshtiEmail author
  • Kaizheng Zhu
  • Anna-Lena Kjøniksen
  • Bo Nyström
Original Contribution


This paper reports turbidity, rheology, zeta potential, and rheo-small angle light scattering measurements on aqueous mixtures of oppositely charged and hydrophobically modified hydroxyethylcellulose derivatives (HM-HEC(−) and HM-HEC(+)) and mixtures of oppositely charged hydroxyethylcellulose (HEC(−) and HEC(+)). The experiments were restricted to the one-phase region, i.e., at mixing ratios before and after the two-phase area. The associative phase separation behavior usually observed when mixing oppositely charged polyelectrolytes was undetectable in the mixtures of the polyelectrolytes without attached hydrophobic groups. Upon modification of HEC by incorporation of pendant hydrophobic groups and by introducing charges of negative or positive sign (HM-HEC(−) and HM-HEC(+)), the mixtures showed phase separation over a certain mixing interval, revealing the existence of large polyelectrolyte complexes. The zero shear viscosity was strongly dependent on both the hydrophobicity of the polymers and the mixing ratio, increasing significantly with hydrophobic modification of polyelectrolytes. The strong enhancement of the turbidity and the viscosity drop as the two-phase area is approached suggest the formation of fragmented non-connected complexes. This work demonstrates that if the oppositely charged polyions have a hydrophilic character, it is not necessary that the attractive Coulombic forces induce insoluble polyelectrolyte complexes.


Polyelectrolytes Oppositely charged Hydrophobically modified Rheology Phase separation 



B.N. and K.Z. gratefully acknowledge support from the Norwegian Research Council through the project 177665/V30.


  1. 1.
    Kabanov VA (2005) Russ Chem Rev 74:3–20, and references thereinCrossRefGoogle Scholar
  2. 2.
    Tsuchida E (1994) Pure Appl Chem 31:1–15Google Scholar
  3. 3.
    Sotiropoulou M, Cincu C, Bokias G, Staikos G (2004) Polymer 45:1563–1568CrossRefGoogle Scholar
  4. 4.
    Thuresson K, Piculell L, Lindman B (1999) J Dispers Sci Technol 20:663–676CrossRefGoogle Scholar
  5. 5.
    Michaels AS, Miekka RG (1961) J Phys Chem 65:1765–1773CrossRefGoogle Scholar
  6. 6.
    Bergfelt K, Piculell L, Tjerneld F (1995) Macromolecules 28:3360–3370CrossRefGoogle Scholar
  7. 7.
    Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Eur J Pharm Biopharm 57:35–52CrossRefGoogle Scholar
  8. 8.
    Zaino C, Zambito Y, Mollica G, Geppi M, Serafini MF, Carelli V, Di Colo G (2007) Open Drug Deliv J 1:68–75CrossRefGoogle Scholar
  9. 9.
    Kabanov VA, Zezin AB (1984) Pure Appl Chem 56:343–354CrossRefGoogle Scholar
  10. 10.
    Piculell L, Lindman B (1992) Adv Colloid Interface Sci 41:149–178CrossRefGoogle Scholar
  11. 11.
    Cohen Stuart MA (2008) Colloid Polym Sci 286:855–864CrossRefGoogle Scholar
  12. 12.
    Thuresson K, Nilsson S, Lindman B (1996) Langmuir 12:530–537CrossRefGoogle Scholar
  13. 13.
    Antunes FE, Lindman B, Miguel MG (2005) Langmuir 21:10188–10196CrossRefGoogle Scholar
  14. 14.
    Tsianou M, Kjøniksen AL, Thuresson K, Nyström B (1999) Macromolecules 32:2974–2982CrossRefGoogle Scholar
  15. 15.
    Dautzenberg H (2000) Macromol Chem Phys 201:1765–1773CrossRefGoogle Scholar
  16. 16.
    Saether HV, Holme HK, Maurstald G, Smidsrod O, Stokke BT (2008) Carbohydr Polym 74:813–821CrossRefGoogle Scholar
  17. 17.
    Singh SS, Siddhanta AK, Meena R, Prasad K, Bandyopadhyay S, Bohidar HB (2007) Int J Biol Macromol 41:185–192CrossRefGoogle Scholar
  18. 18.
    Tsianou M (1999) Association phenomena involving hydrophobically modified polymers: electrostatic and hydrophobic contributions. Lund University, Ph.D. thesisGoogle Scholar
  19. 19.
    Burke NAD, Mazumder MAJ, Hanna M, Stöver HDH (2007) J Polym Sci 45:4129–4143Google Scholar
  20. 20.
    Dautzenberg H (1997) Macromolecules 30:7810–7815CrossRefGoogle Scholar
  21. 21.
    Dautzenberg H, Hartmann J, Grunewald S, Brand F (1996) Ber Bunsenges Phys Chem 100:1024–1032Google Scholar
  22. 22.
    Cundall RB, Lawton JB, Murray D, Phillips GO (1979) Makromol Chem 180:2913–2922CrossRefGoogle Scholar
  23. 23.
    Kovačević D, Borković S, Požar J (2007) Colloids Surf A Physicochem Eng Asp 302:107–112CrossRefGoogle Scholar
  24. 24.
    Beheshti N, Zhu K, Kjøniksen AL, Nyström B (2008) Colloids Surf A Physicochem Eng Asp 328:79–89CrossRefGoogle Scholar
  25. 25.
    Miyajima T, Kitsuki T, Kita K, Kamitani H, Yamaki K (1999) Polysaccharide derivative, and preparation process and use thereof. US Patent 5891450Google Scholar
  26. 26.
    Beheshti N, Zhu K, Kjøniksen AL, Nyström B (2007) J Non-Cryst Solids 353:3906–3914CrossRefGoogle Scholar
  27. 27.
    Beheshti N, Bu H, Zhu KZ, Kjøniksen AL, Knudsen KD, Pamies R, Cifre JGH, de la Torre JG, Nyström B (2006) J Phys Chem B 110:6601–6608CrossRefGoogle Scholar
  28. 28.
    Maleki A, Kjøniksen AL, Nyström B (2005) J Phys Chem B 109:12329–12336CrossRefGoogle Scholar
  29. 29.
    Tho I, Kjøniksen AL, Nyström B, Roots J (2003) Biomacromolecules 4:1623–1629CrossRefGoogle Scholar
  30. 30.
    Maleki A, Lafitte G, Kjøniksen AL, Thuresson K, Nyström B (2008) Carbohydr Res 343:328–340CrossRefGoogle Scholar
  31. 31.
    Pradines V, Lavabre D, Micheau JC, Pimienta V (2005) Langmuir 21:11167–11172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Neda Beheshti
    • 1
    Email author
  • Kaizheng Zhu
    • 1
  • Anna-Lena Kjøniksen
    • 1
  • Bo Nyström
    • 1
  1. 1.Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations