Advertisement

Colloid and Polymer Science

, Volume 288, Issue 10–11, pp 1047–1059 | Cite as

Responsive P(NIPAM-co-NtBAM) microgels: Flory–Rehner description of the swelling behaviour

  • Yvonne Hertle
  • Michael Zeiser
  • Christoph Hasenöhrl
  • Peter Busch
  • Thomas HellwegEmail author
Original Contribution

Abstract

In the present work, a systematic series of poly(N-isopropylacrylamide)(NIPAM) –poly(N-tert-butylacrylamide) (NtBAM) copolymer microgels is prepared by surfactant-free emulsion polymerisation using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. The thermoresponsive behaviour of these colloids was studied in detail applying different scattering techniques. The swelling curves obtained on the basis of photon correlation spectroscopy (PCS) are analysed using the theoretical model of Flory and Rehner. The PCS measurements reveal the narrow particle size distribution of the poly(NIPAM-co-NtBAM) microgels and a decreasing hydrodynamic radius as well as a decreasing volume phase transition temperature (VPTT) with increasing comonomer content. The description of the swelling ratio α as a function of temperature by the Flory–Rehner theory for uncharged homopolymer gels was only partially satisfying and fails for higher comonomer contents. In addition, small angle neutron scattering (SANS) is used to study the internal network structure of these microgels, and the polymer network is characterised in terms of the correlation length ξ. Above the transition temperature, only interfacial scattering from the totally collapsed particles in water can be observed. Due to a certain surface roughness of the copolymer microgels, the SANS profiles beyond the VPTT were fitted using a modified Porod law.

Keywords

Copolymer microgels Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) PCS SANS  LCST Volume phase transition 

Notes

Acknowledgements

This work was financed by the DFG within the framework of the priority program SPP 1259 “Intelligente Hydrogele”. The JCNS outstation at the FRM II is acknowledged for providing SANS beamtime. We are grateful to Markus Drechsler for the help with the cryo-TEM.

References

  1. 1.
    Bradley M, Vincent B, Burnett G (2009) Uptake and release of surfactants from polyampholyte microgel particles. Colloid Polym Sci 287:345–350CrossRefGoogle Scholar
  2. 2.
    Dusek K (1993) Responsive gels: volume transitions I. In: Advances in polymer science, 1st edn., vol 109. Springer, BerlinGoogle Scholar
  3. 3.
    Dusek K (1993) Responsive gels: volume transitions II. In: Advances in polymer science, 1st edn., vol 110. Springer, BerlinGoogle Scholar
  4. 4.
    Hoshino Y, Urakami T, Kodama T, Koide H, Oku N, Okahata Y, Shea KJ (2009) Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small 5:1562–1568CrossRefGoogle Scholar
  5. 5.
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218CrossRefGoogle Scholar
  6. 6.
    Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92(2):1365CrossRefGoogle Scholar
  7. 7.
    Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240CrossRefGoogle Scholar
  8. 8.
    Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains Macromolecules 31:6099CrossRefGoogle Scholar
  9. 9.
    Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33CrossRefGoogle Scholar
  10. 10.
    Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708CrossRefGoogle Scholar
  11. 11.
    Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications, Polymer 48:1815–1823CrossRefGoogle Scholar
  12. 12.
    Karg M, Hellweg T (2009) New smart poly(NIPAM) microgels and nanoparticle microgel hybrids: properties and advances in characterisation. Curr Opin Colloid Interface Sci 14:438–450CrossRefGoogle Scholar
  13. 13.
    Karg M, Hellweg T (2009) Smart inorganic/organic hybrid microgels: synthesis and characterisation. J Mater Chem 19:8714–8715CrossRefGoogle Scholar
  14. 14.
    Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256CrossRefGoogle Scholar
  15. 15.
    Karg M, Pastoriza-Santos I, Rodriguez-González B, von Klitzing R, Wellert S, Hellweg T (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24(12):6300–6306CrossRefGoogle Scholar
  16. 16.
    Kratz K, Hellweg Th, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A 170(2–3):137–149CrossRefGoogle Scholar
  17. 17.
    Kim J-H, Ballauff M (1999) The volume transition in thermosensitive core–shell latex particles containing charged groups. Colloid Polym Sci 277:1210–1214CrossRefGoogle Scholar
  18. 18.
    Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92(24):5013–5016CrossRefGoogle Scholar
  19. 19.
    Schmmidt S, Motschmann H, Hellweg T, von Klitzing R (2008) Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels. A combined AFM and ellipsometry study, Polymer 49:749–756CrossRefGoogle Scholar
  20. 20.
    Meng Z, Smith MH Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels, Colloid Polym Sci 287:277–285CrossRefGoogle Scholar
  21. 21.
    Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of smart microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254CrossRefGoogle Scholar
  22. 22.
    Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37:2544–2550CrossRefGoogle Scholar
  23. 23.
    Saunders BR, Crowther HM, Vincent B (1997) Poly((methyl methacrylate)-co-(methacrylic acid)) microgel particles: swelling control using pH, cononsolvency, and osmotic deswelling. Macromolecules 30:482–487CrossRefGoogle Scholar
  24. 24.
    Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–137CrossRefGoogle Scholar
  25. 25.
    Duracher D, Elaissari A, Pichot C (1999) Characterization of cross-linked poly(N-isopropylmethacrylamide) microgel latexes. Colloid Polym Sci 277:905-913CrossRefGoogle Scholar
  26. 26.
    Berndt I, Richtering W (2003) Doubly temperature sensitive core–shell microgels. Macromolecules 36:8780–8785CrossRefGoogle Scholar
  27. 27.
    Uchiyama S, Matsumura Y, Prasanna de Silva A, Iwai K (2004) Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers. Anal Chem 76:1793–1798CrossRefGoogle Scholar
  28. 28.
    Berndt I, Pedersen JS, Richtering W (2006) Temperature-sensitive core–shell microgel particles with dense shell. Angew Chem 118:1769–1773CrossRefGoogle Scholar
  29. 29.
    Tanaka T, Sato E, Hirakawo Y, Hirotsu S, Peetermans J (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458CrossRefGoogle Scholar
  30. 30.
    Shibayama M, Tanaka T, Han CC (1992) Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition. J Chem Phys 97(9)6829–6841CrossRefGoogle Scholar
  31. 31.
    Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30CrossRefGoogle Scholar
  32. 32.
    Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E (2002) Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys Rev E 66(5):051803/1–10CrossRefGoogle Scholar
  33. 33.
    Flory PJ (1953) Principles or polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  34. 34.
    Flory PJ (1970) Thermodynamics of polymer solutions. Discuss. Faraday Soc. 49:7–29CrossRefGoogle Scholar
  35. 35.
    Crassous JJ, Wittemann A, Siebenbürger M, Schrinner M, Drechsler M, Ballauff M (2008) Direct imaging of temperature-sensitive core–shell latexes by cryogenic transmission electron microscopy. Colloid Polym Sci 286:805–812CrossRefGoogle Scholar
  36. 36.
    Cook JP, Riley DJ (2009) The effect of perchlorate ions on a pyridine-based microgel. Adv Colloid Interface Sci 147:67–73CrossRefGoogle Scholar
  37. 37.
    Yi YD, Bae YC (1998) Volume-phase transition of submicron-sized N-isopropylacrylamide N-tert-butylacrylamide particles by photon correlation spectroscopy. J Appl Polym Sci 67:2087–2092CrossRefGoogle Scholar
  38. 38.
    Debord JD, Lyon LA (2003) Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures. Langmuir 19:7662–7664CrossRefGoogle Scholar
  39. 39.
    Shibayama M, Tanaka T, Han CC (1992) Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels. J Chem Phys 97(9):6842–6854CrossRefGoogle Scholar
  40. 40.
    Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New YorkGoogle Scholar
  41. 41.
    Higgins JS, Benoit HC (1996) Polymers and neutron scattering, 2nd edn. Clarendon, OxfordGoogle Scholar
  42. 42.
    Chu B (1974) Laser light scattering. Academic, New YorkGoogle Scholar
  43. 43.
    Koppel DE (1972) Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J Chem Phys 57(11):4814–4820CrossRefGoogle Scholar
  44. 44.
    Bargeron CB (1974) Measurement of continuous distribution of spherical particles by intensity correlation spectroscopy: analysis by cumulants. J Chem Phys 61(5):2134–2138CrossRefGoogle Scholar
  45. 45.
    Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–217CrossRefGoogle Scholar
  46. 46.
    Provencher SW (1982) Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242CrossRefGoogle Scholar
  47. 47.
    Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J Chem Phys 11(11):512–520CrossRefGoogle Scholar
  48. 48.
    Eichinger BE, Flory PJ (1968) Thermodynamics of polymer solutions. Trans Faraday Soc 64;2035–2052CrossRefGoogle Scholar
  49. 49.
    Hirotsu S (1994) Static and time-dependent properties of polymer gels around the volume phase transition. Phase Transit 47:183–240CrossRefGoogle Scholar
  50. 50.
    Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume-phase transitions of ionized N-isopropylacrylamide gels. J Chem Phys 87(2):1392–1395CrossRefGoogle Scholar
  51. 51.
    Geisler E, Horkay F, Hecht A-M (1993) Scattering from network polydispersity in polymer gels. Phys Rev Lett 71(4)645–648CrossRefGoogle Scholar
  52. 52.
    de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  53. 53.
    Crowther HM, Saunders BR, Mears SJ, Cosgrove T, Vincent B, King SM, Yu G-E (1999) Poly(NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study. Colloids Surf A Physicochem Eng Asp 152:327–333CrossRefGoogle Scholar
  54. 54.
    Mears SJ, Deng Y, Cosgrove T, Pelton R (1997) Structure of sodium dodecyl sulfate bound to a poly(NIPAM) microgel particle. Langmuir 13:1901CrossRefGoogle Scholar
  55. 55.
    Kratz K, Hellweg Th, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6531–6539CrossRefGoogle Scholar
  56. 56.
    Wignall GD, Bates FS (1987) Absolute calibration of small-angle neutron scattering data. J Appl Crystallogr 20:28–40CrossRefGoogle Scholar
  57. 57.
    Russell TP, Lin JS, Spooner S, Wignall GD (1988) Intercalibration of small-angle X-ray and neutron scattering data. J Appl Crystallogr 21:629–638CrossRefGoogle Scholar
  58. 58.
    Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci 278:972–978CrossRefGoogle Scholar
  59. 59.
    Sierra-Martín B, Choi Y, Romero-Cano MS, Cosgrove T, Vincent B, Fernández-Barbero A (2005) Microscopic signature of a microgel volume phase transition. Macromolecules 38:10782–10787CrossRefGoogle Scholar
  60. 60.
    Zhang Q-S, Zha L-S, Ma J-H, Liang B-R (2007) Synthesis and characterization of novel, temperature-sensitive microgels based on N-isopropylacrylamide and tert-butyl acrylate. J Appl Polym Sci 103:2962–2967CrossRefGoogle Scholar
  61. 61.
    Wu J, Huang G, Hu Z (2003) Interparticle potential and the phase behavoir of temperature-sensitive microgel dispersions. Macromolecules 36:440–448CrossRefGoogle Scholar
  62. 62.
    Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids. Phys Rev Lett 90(4):048304CrossRefGoogle Scholar
  63. 63.
    Hino T, Prausnitz JM (1996) Swelling equilibria for heterogeneous polyacrylamide gels. J Appl Polym Sci 62:1635–1640CrossRefGoogle Scholar
  64. 64.
    Senff H, Richtering W (2000) Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840CrossRefGoogle Scholar
  65. 65.
    Erman B, Flory PJ (1986) Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules 19:2342–2353CrossRefGoogle Scholar
  66. 66.
    Kratz K, Hellweg Th, Eimer W (1998) Effect of connectivity and charge density on the swelling and local structural properties of colloidal PNIPAM microgels. Ber Bunsenges Phys Chem 102:1603–1608Google Scholar
  67. 67.
    Kohlbrecher J (2008) SASfit: a program for fitting simple structural models to small angle scattering data. Paul Scherrer Institut, Laboratory for Neutron Scattering, VilligenGoogle Scholar
  68. 68.
    Wong P (1985) Scattering by inhomogeneous systems with rough internal surfaces: porous solids and random-field Ising systems. Phys Rev B 32(11):7417–7424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yvonne Hertle
    • 1
  • Michael Zeiser
    • 1
  • Christoph Hasenöhrl
    • 1
  • Peter Busch
    • 2
  • Thomas Hellweg
    • 1
    Email author
  1. 1.Physikalische Chemie IUniversität BayreuthBayreuthGermany
  2. 2.JCNS—Jülich Centre for Neutron Science at the FRM-IIForschungszentrum Jülich GmbHGarchingGermany

Personalised recommendations