Colloid and Polymer Science

, Volume 288, Issue 9, pp 1013–1018 | Cite as

Preparation of single-walled carbon nanotube (SWNT) gel composites using poly(ionic liquids)

Original Contribution

Abstract

This paper reports a new and practical route for synthesizing nanotube-polymeric ionic liquids gel by non-covalent functionalization of oxidized single-walled carbon nanotube (SWNT) surfaces with imidazolium-based poly(ionic liquids) (PILs), using in situ radical polymerization method. A black and homogeneous precipitate SWNTs was obtained as a gel form, which is well dispersed in aqueous solution without any aggregation. The formation of SWNT gels is explained by the electrostatic attractions or π-bonds between the SWNT surface and the PIL matrix. By anion-exchange reaction of PIL bound to SWNTs, hydrophilic anions in PIL were substituted with hydrophobic anions, resulting in an effective transfer of SWNT-PIL hydrogels to organogels. The result also showed that SWNTs can effectively improve the conductivity along with the thermal stability of nanocomposite gels.

Keywords

Carbon nanotubes Nanocomposite Hydrogels Organogels 

References

  1. 1.
    Baughman RH, Zakhidov AA, De Heer WA (2002) Science 297:787CrossRefGoogle Scholar
  2. 2.
    Tan SJ, Verschueren ARM, Dekker C (1998) Nature 393:49CrossRefGoogle Scholar
  3. 3.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622CrossRefGoogle Scholar
  4. 4.
    Park C, Ounaies Z, Watson KA, Crooks RE, Smith JJ, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Cair TL (2002) Chem Phys Lett 364:303CrossRefGoogle Scholar
  5. 5.
    Sabba Y, Thomas EL (2004) Macromolecules 37:4815CrossRefGoogle Scholar
  6. 6.
    Fei B, Lu HF, Hu ZG, Xin JH (2006) Nanotechnology 17:1589CrossRefGoogle Scholar
  7. 7.
    Karajanagi SS, Yang HC, Asuri P, Sellitto E, Dordick JS, Kane RS (2006) Langmuir 22:1392CrossRefGoogle Scholar
  8. 8.
    Perez LR, Teuma E, Falqui A, Gomez M, Serp P (2008) Chem Commun 2008:4201CrossRefGoogle Scholar
  9. 9.
    Zhang S, Zhang Y, Zhang J, Chen Y, Li X, Shi J, Guo Z (2006) J Mater Sci 4:3123CrossRefGoogle Scholar
  10. 10.
    Yu B, Zhou F, Liu G, Liang Y, Huck WTS, Liu W (2006) Chem Commun 2006:2356CrossRefGoogle Scholar
  11. 11.
    Wang J, Chu H, Li Y (2008) ACS Nano 2:2540CrossRefGoogle Scholar
  12. 12.
    Lee BS, Chi YS, Lee JK, Choi IS, Song CE, Namgoong SK, Lee SG (2004) J Am Chem Soc 126:480CrossRefGoogle Scholar
  13. 13.
    Zhou X, Wu T, Ding L, Hu B, Hou M, Han B (2009) Chem Commun 14:1897–1899CrossRefGoogle Scholar
  14. 14.
    Fukushima T, Kosaka A, Yamamoto Y, Aimiya T, Notazawa S, Takigawa T, Inabe T, Aida T (2006) Small 2:554CrossRefGoogle Scholar
  15. 15.
    Kim Y, Minami N, Kazaoui S (2005) Appl Phys Lett 86:073103CrossRefGoogle Scholar
  16. 16.
    Ogoshi T, Takashima Y, Yamaguchi H, Harada A (2007) J Am Chem Soc 129:4878CrossRefGoogle Scholar
  17. 17.
    Katakabe T, Kaneko T, Watanabe M, Fukushima T, Aida T (2005) J Electrochem Soc 152:A1913CrossRefGoogle Scholar
  18. 18.
    Wang Z, Chen Y (2007) Macromolecules 40:3402CrossRefGoogle Scholar
  19. 19.
    Aerov AA, Potemkin II (2009) J Phys Chem B113:1883Google Scholar
  20. 20.
    Yoshida M, Koumura N, Misawa Y, Tamaoki N, Matsumoto H, Kawanami H, Kazaoui S, Minami N (2007) J Am Chem Soc 129:11039CrossRefGoogle Scholar
  21. 21.
    Zhang X, Jiao K, Wang X (2008) Electroanalysis 20:1361CrossRefGoogle Scholar
  22. 22.
    Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP (2008) Biomacromolecules 9:55CrossRefGoogle Scholar
  23. 23.
    Kachoosangi RT, Wildgoose GG, Compton RG (2007) Electroanalysis 19:1483CrossRefGoogle Scholar
  24. 24.
    Wei D, Ivaska A (2006) Anal Chim Acta 607:126CrossRefGoogle Scholar
  25. 25.
    Fan S, Xiao F, Liu L, Zhao F, Zeng B (2008) Sens Actuat 132:34–39CrossRefGoogle Scholar
  26. 26.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Science 300:2072CrossRefGoogle Scholar
  27. 27.
    Fukushima T, Asaka K, Kosaka A, Aida T (2005) Angew Chem Int Ed 44:2410CrossRefGoogle Scholar
  28. 28.
    Zhao F, Wu X, Wang M, Liu Y, Gao L, Dong S (2004) Anal Chem 76:4960CrossRefGoogle Scholar
  29. 29.
    Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) Electrochim Acta 53:5555CrossRefGoogle Scholar
  30. 30.
    Zhang YJ, Shen YF, Li JH, Niu L, Dong SJ, Ivaska A (2005) Langmuir 21:4797CrossRefGoogle Scholar
  31. 31.
    Tao W, Pan D, Liu Q, Yao S, Nie Z, Han B (2006) Electroanalysis 18:1681CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Gao Y, Zhan D, Liu H, Zhao Q, Kou Y, Shao Y, Li M, Zhuang Q, Zhu Z (2005) Talanta 66:51CrossRefGoogle Scholar
  33. 33.
    Marcilla R, Blazquez JA, Rodríguez J, Pomposo JA, Mecerreyes D (2004) J Polym Sci Part A Polym Chem 42:208CrossRefGoogle Scholar
  34. 34.
    Xiao F, Ruan C, Liu L, Yan R, Zhao F, Zeng B (2008) Sens Actuat B 134:895CrossRefGoogle Scholar
  35. 35.
    Yan LY, Poon YF, Chan-park MB, Chen Y, Zhang Q (2008) J Phys Chem C 112:7579CrossRefGoogle Scholar
  36. 36.
    Park MJ, Lee JK, Lee BS, Lee YW, Choi IS, Lee SJ (2006) Chem Mater 18:1546CrossRefGoogle Scholar
  37. 37.
    Wang Y, Maspoch D, Zou S, Schatz GC, Smalley RE, Mirkin CA (2006) Proc Natl Acad Sci USA 103:2016Google Scholar
  38. 38.
    Zhang Y, Shen Y, Yuan J, Han D, Wang Z, Zhang Q, Niu L (2006) Angew Chem Int Ed 45:5867CrossRefGoogle Scholar
  39. 39.
    Marcilla R, Curri ML, Cozzoli PD, Martinez MT, Loinaz I, Grande H, Promposo JA, Mecerreyes D (2006) Small 2:507CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations