Colloid and Polymer Science

, Volume 288, Issue 9, pp 937–950 | Cite as

Rheology of interfacial layers

  • Reinhard Miller
  • James K. Ferri
  • Aliyar Javadi
  • Jürgen Krägel
  • Nenad Mucic
  • Rainer Wüstneck
Invited Review

Abstract

The response of interfacial layers to deformations in size and shape depends on their composition. The corresponding main mechanical quantities are elasticity and viscosity of dilation and shear, respectively. Hence, the interfacial rheology represents a kind of two-dimensional equivalent to the traditional bulk rheology. Due to growing interest in the quantitative understanding of foams and emulsions, more works are dedicated to studies on interfacial rheology. This overview presents the theoretical basis for traditional and recently developed experimental tools and discusses their application to different interfacial systems. While dilational rheology provides information on the composition of mixed interfacial layers, the shear rheology gives answers essentially on structures formed at an interface. The most frequently used methods at present are the oscillating drop and bubble tensiometry methods for dilational deformations and oscillating ring/bicone rheometers for shear deformations.

Keywords

Interfacial rheology Dilational elasticity and viscosity Shear elasticity and viscosity Surfactant adsorption layers Mixed protein surfactant layers 

References

  1. 1.
    Ascherson FM (1840) Archiv Anat Physiol und wiss Med 44Google Scholar
  2. 2.
    Hagen GHL (1845) Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (Phys Math Kl), Berlin 41Google Scholar
  3. 3.
    Plateau JAF (1869) Phil Mag Ser 4:38–445Google Scholar
  4. 4.
    Marangoni C (1870) Nuovo Cim 3:50Google Scholar
  5. 5.
    Gibbs JW (1931) The collected work of JW Gibbs, vol 1. Longmans Green, New YorkGoogle Scholar
  6. 6.
    Lord Rayleigh (1890) Proc Roy Soc (London) 47:281–364Google Scholar
  7. 7.
    Boussinesq MJ (1913) Ann Chim Phys Ser 8(29):349–364Google Scholar
  8. 8.
    Levich VG (1941) Acta Physicochim 14:307Google Scholar
  9. 9.
    Dorrestein R (1951) Koninkl Ned Akad Wetenschap Proc B 54:260Google Scholar
  10. 10.
    Erickson JL (1952) J Ration Mech Anal 1:521Google Scholar
  11. 11.
    Oldroyd JG (1955) Proc Roy Soc (London) A 232:567Google Scholar
  12. 12.
    Scriven LE (1960) Chem Eng Sci 12:98Google Scholar
  13. 13.
    Hansen RS (1964) J Appl Phys 35:1983Google Scholar
  14. 14.
    van den Tempel M, van de Riet RP (1965) J Chem Phys 42:2769Google Scholar
  15. 15.
    Lucassen J (1968) Trans Faraday Soc 64:2221Google Scholar
  16. 16.
    Joly M (1964) Surface viscosity. In: Danielli JF, Pankhurst KGA, Riddiford AC (eds) Recent progress in surface science, vol 1. Academic, New York, pp 1–48Google Scholar
  17. 17.
    Lucassen J (1981) In: Lucassen-Reynders EH (ed) Surfactant science series, vol 11. Marcel Dekker, Basel, pp 217–265Google Scholar
  18. 18.
    Edwards DA, Brenner H, Wasan DT (1991) Interfacial transport processes and rheology. Butterworth-Heinemann, BostonGoogle Scholar
  19. 19.
    Miller R, Wüstneck R, Krägel J, Kretzschmar G (1996) Colloids Surf A111:75Google Scholar
  20. 20.
    Miller R, Liggieri L (eds) (2009) Progress in colloid and interface science series: interfacial rheology, vol 1. Brill, LeidenGoogle Scholar
  21. 21.
    Dickinson E, Murray BS, Stainsby G (1988) J Chem Soc Faraday Trans 1(84):871Google Scholar
  22. 22.
    Bhattacharyya A, Monroy F, Langevin D, Argillier JF (2000) Langmuir 16:8727Google Scholar
  23. 23.
    Stubenrauch C, Miller R (2004) J Phys Chem 108:6412Google Scholar
  24. 24.
    Koelsch P, Motschmann H (2005) Langmuir 21:6265Google Scholar
  25. 25.
    Murray BS, Dickinson E, Wang Y (2009) Food Hydrocoll 23:1198Google Scholar
  26. 26.
    Krägel J, Derkatch SR, Miller R (2008) Adv Colloid Interface Sci 144:38Google Scholar
  27. 27.
    Krägel J, Derkatch SR (2009) Interfacial shear rheology—an overview of measuring techniques and their applications. In: Miller R, Liggieri L (eds) Progress in colloid and interface science: interfacial rheology, vol 1. Brill, Leiden, pp 372–428Google Scholar
  28. 28.
    Krägel J, Derkatch SR (2010) Current Opinion Colloid Interface Sci 15. doi:10.1016/j.cocis.2010.02.001
  29. 29.
    Krotov VV (2009) In: Miller R, Liggieri L (eds) Progress in colloid and interface science: interfacial rheology, vol 1. Brill, Leiden, pp 3–37Google Scholar
  30. 30.
    Myers RJ, Harkins WD (1937) J Chem Phys 5:601Google Scholar
  31. 31.
    Dervichian DG, Joly M (1937) Comptes rendus 2004:1318Google Scholar
  32. 32.
    Davies JT, Mayers GRA (1960) Trans Faraday Soc 56:691Google Scholar
  33. 33.
    Wasan DT, Gupta L, Vora MK (1971) AIChE J 17:1287Google Scholar
  34. 34.
    Goodrich FC, Allen LH, Poskanzer A (1975) J Colloid Interface Sci 52:201Google Scholar
  35. 35.
    Krieg RD, Son JE, Flumerfeld RW (1981) J Colloid Interface Sci 79:14Google Scholar
  36. 36.
    Hassager O, Westborg H (1987) J Colloid Interface Sci 119:524Google Scholar
  37. 37.
    Perieditis J, Amundson NR, Flumerfelt RW (1987) J Colloid Interface Sci 119:303Google Scholar
  38. 38.
    Langmuir I (1936) Science 84:378Google Scholar
  39. 39.
    Brown AG, Thuman WC, McBain JW (1953) J Colloid Sci 8:491Google Scholar
  40. 40.
    Krägel J, Siegel S, Miller R, Born M, Schano K-H (1994) Colloids Surfaces A 91:169Google Scholar
  41. 41.
    Shahin GT (1986) PhD Thesis, University of Pennsylvania, PhiladelphiaGoogle Scholar
  42. 42.
    Brooks CF, Fuller GG, Frank CW, Robertson CR (1999) Langmuir 15:2450Google Scholar
  43. 43.
    Maestro A, Ortega F, Monroy F, Krägel J, Miller R (2009) Langmuir 25:7393Google Scholar
  44. 44.
    Piazza L, Dürr-Auster N, Gigli J, Windhab EJ, Fischer P (2009) Food Hydrocoll 23:2125Google Scholar
  45. 45.
    Vandebril S, Franck A, Fuller GG, Moldenaers P, Vermant J (2010) Rheol Acta 49:131Google Scholar
  46. 46.
    Noskov BA (2009) Capillary waves in interfacial rheology. In: Miller R, Liggieri L (eds) Progress in colloid and interface science: interfacial rheology, vol 1. Brill, Leiden, pp 103–136Google Scholar
  47. 47.
    Tabor D (1980) J Colloid Interface Sci 75:240Google Scholar
  48. 48.
    Franklin B (1774) Philos Trans R Soc 64:445Google Scholar
  49. 49.
    Rayleigh L (1774) Phil Mag 30:386Google Scholar
  50. 50.
    Lamb H (1932) Hydrodynamics. Dover, New YorkGoogle Scholar
  51. 51.
    Levich VG (1940) Soviet Phys JETP 10:1296Google Scholar
  52. 52.
    Dorrestein R (1951) Proc Koninkl Ned Akad Wet B54:350Google Scholar
  53. 53.
    Lucassen J (1968) Trans Faraday Soc 64:2230Google Scholar
  54. 54.
    Lucassen-Reynders EH, Lucassen J (1969) Adv Colloid Interface Sci 2:347Google Scholar
  55. 55.
    Miller R, Fainerman VB (2004) Emulsions: structure, stability and interactions. In: Petsev DN (ed) Interface Science and Technology Series, vol 4. Elsevier, Amsterdam, pp 61–90Google Scholar
  56. 56.
    Noskov BA (1989) Izv AN SSSR Ser Fluid Dynamics 2:105Google Scholar
  57. 57.
    Lucassen-Reynders EH, Lucassen J (1994) Colloids Surf A 85:211Google Scholar
  58. 58.
    Lucassen J, van den Tempel M (1972) Chem Eng Sci 27:1283Google Scholar
  59. 59.
    Lucassen J, van den Tempel M (1972) J Colloid Interface Sci 41:491Google Scholar
  60. 60.
    Noskov BA (1982) Kolloid Zh (in Russian) 44:492Google Scholar
  61. 61.
    van den Tempel M, Lucassen-Reyders EH (1983) Adv Colloid Interface Sci 18:281Google Scholar
  62. 62.
    Lucassen J (1975) Faraday Discuss Chem Soc 59:76Google Scholar
  63. 63.
    Joos P, van Hunsel J (1988) Colloids Surf 33:99Google Scholar
  64. 64.
    Noskov BA (2002) Adv Colloid Interface Sci 95:237Google Scholar
  65. 65.
    Ivanov IB, Danov KD, Ananthapadmanabhan KP, Lips A (2005) Adv Colloid Interface Sci 114–115:61Google Scholar
  66. 66.
    Jiang Q, Valentini JE, Chiew YC (1995) J Colloid Interface Sci 174:268Google Scholar
  67. 67.
    Joos P (1999) Dynamic surface phenomena. VSP, DordrechtGoogle Scholar
  68. 68.
    Aksenenko EV, Kovalchuk VI, Fainerman VB, Miller R (2007) J Phys Chem C 111:14713Google Scholar
  69. 69.
    Kovalchuk VI, Aksenenko EV, Miller R, Fainerman VB (2009) In: Miller R, Liggieri L (eds) Progress in colloid and interface science: interfacial rheology, vol 1. Brill, Leiden, pp 332–371Google Scholar
  70. 70.
    Warburton B (1996) Curr Opin Colloid Interface Sci 1:481–486CrossRefGoogle Scholar
  71. 71.
    Krägel J, Li JB, Miller R, Bree M, Kretzschmar G, Möhwald H (1996) Colloid Polym Sci 274:1183Google Scholar
  72. 72.
    Tschoegl NW (1961) Kolloid-Z 181:19Google Scholar
  73. 73.
    Erni P, Fischer P, Windhab EJ (2003) Rev Sci Instrum 74:4916Google Scholar
  74. 74.
    Bonfillon A, Langevin D (1993) Langmuir 9:2172Google Scholar
  75. 75.
    Noskov BA (2010) Curr Opin Coll Interf Sci 15. doi:10.1016/j.cocis.2010.01.006
  76. 76.
    Miller R, Sedev R, Schano K-H, Ng Ch, Neumann AW (1993) Colloids Surf A 69:209Google Scholar
  77. 77.
    Benjamins J, Cagna A, Lucassen-Reynders EH (1996) Colloids Surf A 114:245Google Scholar
  78. 78.
    Rotenberg Y, Boruvka L, Neumann AW (1983) J Colloid Interface Sci 93:169Google Scholar
  79. 79.
    Maze C, Burnet G (1969) Surf Sci 13:451Google Scholar
  80. 80.
    Leser ME, Acquistapace S, Cagna A, Makievski AV, Miller R (2005) Colloids Surf A 261:25Google Scholar
  81. 81.
    Kretzschmar G, Lunkenheimer K (1970) Ber Bunsenges Phys Chem 74:1064Google Scholar
  82. 82.
    Passerone A, Liggieri L, Rando N, Ravera F, Ricci E (1991) J Colloid Interface Sci 146:152Google Scholar
  83. 83.
    Liggieri L, Ravera F, Passerone A (1995) J Colloid Interface Sci 169:226Google Scholar
  84. 84.
    Kovalchuk VI, Zholkovskij EK, Krägel J, Miller R, Fainerman VB, Wüstneck R, Loglio G, Dukhin SS (2000) J Colloid Interface Sci 224:245Google Scholar
  85. 85.
    Kovalchuk VI, Ravera F, Liggieri L, Loglio G, Pandolfini P, Makievski AV, Vincent-Bonnieu S, Krägel J, Javadi A, Miller R (2010) Adv Colloid Interface Sci. doi:10.1016/j.cis.2010.02.012
  86. 86.
    Kotsmar CS, Krägel J, Kovalchuk VI, Aksenenko EV, Fainerman VB, Miller R (2009) J Phys Chem B 113:103Google Scholar
  87. 87.
    Wantke K-D, Fruhner H (2001) J Colloid Interface Sci 237:185Google Scholar
  88. 88.
    Kovalchuk VI, Krägel J, Makievski AV, Ravera F, Liggieri L, Loglio G, Fainerman VB, Miller R (2004) J Colloid Interface Sci 280:498Google Scholar
  89. 89.
    Fainerman VB, Kovalchuk VI, Aksenenko EV, Michel M, Leser ME, Miller R (2004) J Phys Chem B 108:13700Google Scholar
  90. 90.
    Fainerman VB, Lylyk SV, Aksenenko EV, Makievski AV, Petkov JT, Yorke J, Miller R (2009) Colloids Surf A 334:1Google Scholar
  91. 91.
    Fainerman VB, Lylyk SV, Aksenenko EV, Makievski AV, Ravera F, Petkov JT, Yorke J, Miller R (2009) Colloids Surf A 334:16Google Scholar
  92. 92.
    Gilányi T, Varga I, Gilányi M, Mészáros R (2006) J Colloid Interface Sci 301:428Google Scholar
  93. 93.
    Fainerman VB, Petkov JT, Miller R (2008) Langmuir 24:6447Google Scholar
  94. 94.
    Danov KD, Kralchevsky PA, Denkov ND, Ananthapadmanabhan KP, Lips A (2006) Adv Colloid Interface Sci 119:17Google Scholar
  95. 95.
    Lucassen-Reynders EH, Fainerman VB, Miller R (2004) J Phys Chem B 108:9173Google Scholar
  96. 96.
    Noskov BA, Latnikova AV, Lin S-Y, Loglio G, Miller R (2007) J Phys Chem C 111:16895Google Scholar
  97. 97.
    Graham DE, Phillips MC (1980) J Colloid Interface Sci 76:227Google Scholar
  98. 98.
    Benjamins J, Lucassen-Reynders EH (2009) Interfacial rheology of adsorbed protein layers. In: Miller R, Liggieri L (eds) Progress in colloid and interface science: interfacial rheology, vol 1. Brill, Leiden, pp 253–302Google Scholar
  99. 99.
    Benjamins J, Lucassen-Reynders EH (1998) In: Möbius D, Miller R (eds) Studies in Interface Science, vol 7. Elsevier, Amsterdam, pp 341–384Google Scholar
  100. 100.
    Aksenenko EV, Kovalchuk VI, Fainerman VB, Miller R (2006) Adv Colloid Interface Sci 122:57Google Scholar
  101. 101.
    Miller R, Leser ME, Michel M, Fainerman VB (2005) J Phys Chem 109:13327Google Scholar
  102. 102.
    Garrett PR, Joos P (1976) J Chem Soc Faraday Trans 1(72):2161Google Scholar
  103. 103.
    Pradines V, Krägel J, Fainerman VB, Miller R (2009) J Phys Chem B 113:745Google Scholar
  104. 104.
    Miller R, Alahverdjieva VS, Fainerman VB (2008) Soft Matter 4:1141Google Scholar
  105. 105.
    Alahverdjieva VS, Grigoriev DO, Fainerman VB, Aksenenko EV, Miller R, Möhwald H (2008) J Phys Chem C 112:2136Google Scholar
  106. 106.
    Ravera F, Santini E, Loglio G, Ferrari M, Liggieri L (2006) J Phys Chem B 110:19543Google Scholar
  107. 107.
    Ravera F, Ferrari M, Liggieri L, Loglio G, Santini E, Zanobini A (2008) Colloids Surf A 323:99Google Scholar
  108. 108.
    Noskov BA, Loglio G (1998) Colloids Surf A 143:167Google Scholar
  109. 109.
    Liggieri L, Ferrari M, Ravera F (2007) Colloid stability: the role of surface forces—part II. In: Tadros Th (ed) Colloids and Interface Science Series, vol 2. Wiley, Hoboken, pp 313–344Google Scholar
  110. 110.
    Earnshaw JC, McCoo E (1995) Langmuir 1:1087Google Scholar
  111. 111.
    Dhar P, Cao YY, Fischer TM, Zasadzinski JA (2010) Phys Rev Lett 104:016001Google Scholar
  112. 112.
    Fischer TM (2009) Optical tweezers for 2D micro rheology. In: Miller R, Liggieri L (eds) Progress in colloid and interface science: interfacial rheology, vol 1. Brill, Leiden, p 654Google Scholar
  113. 113.
    Zhang L, D’Acunzi M, Kappl M, Auernhammer GK, Vollmer D, van Kats CM, van Blaaderen A (2009) Langmuir 25:2711Google Scholar
  114. 114.
    Kluge D, Abraham F, Schmidt S, Schmidt HW, Fery A (2010) Langmuir 26:3020Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Reinhard Miller
    • 1
  • James K. Ferri
    • 2
  • Aliyar Javadi
    • 1
  • Jürgen Krägel
    • 1
  • Nenad Mucic
    • 1
  • Rainer Wüstneck
    • 1
  1. 1.Max Planck Institute of Colloids and InterfacesPotsdam/GolmGermany
  2. 2.Department of Chemical and Biomolecular EngineeringLafayette CollegeEastonUSA

Personalised recommendations