Colloid and Polymer Science

, Volume 288, Issue 8, pp 893–899 | Cite as

Preparation and physicochemical characterization of novel chlorambucil-loaded nanoparticles of poly(butylcyanoacrylate)

  • Georgi G. Yordanov
  • Zorka A. Bedzhova
  • Ceco D. Dushkin
Short Communication


The aim of the present study is the preparation and physicochemical characterization of chlorambucil-loaded poly(butylcyanoacrylate) nanoparticles. Chlorambucil is a lipophilic drug, which is used clinically against chronic lymphocytic leukemia, lymphomas, and other types of malignant diseases. However, the chlorambucil use is limited by its chemical instability and toxic side effects. A promising approach to circumvent these drawbacks is the entrapment of chlorambucil in a suitable nanosized carrier. Toward this goal, poly(butylcyanoacrylate) nanoparticles meet the requirements for a drug carrier system due to their biocompatibility, biodegradability, low toxicity, and ability to overcome the multidrug resistance in cancer cells. We prepared chlorambucil-loaded poly(butylcyanoacrylate) nanoparticles, which are characterized for chemical composition, particle size, drug content, and drug release. It is expected that the utilization of poly(butylcyanoacrylate) nanoparticles as a drug carrier system will pave the way toward more effective use of chlorambucil in the treatment of cancer.


Poly(butylcyanoacrylate) Nanoparticles Chlorambucil Emulsion polymerization 



The authors are thankful to COST Action D43 of the European Community.


  1. 1.
    Vasir J, Reddy M, Labhasetwar V (2005) Curr Nanosci 1:47–64CrossRefGoogle Scholar
  2. 2.
    Briesen H, Ramge P, Kreuter J (2000) AIDS Rev 2:31–38Google Scholar
  3. 3.
    Briones E, Colino CI, Lanao J (2008) J Control Release 125:210–227CrossRefGoogle Scholar
  4. 4.
    Salata OV (2004) J Nanobiotechnology 2:3CrossRefGoogle Scholar
  5. 5.
    Brigger I, Dubernet C, Couvreur P (2002) Adv Drug Deliv Rev 54:631–651CrossRefGoogle Scholar
  6. 6.
    Praetorius NP, Mandal TK (2007) Recent Pat Drug Deliv Formul 1:37–51CrossRefGoogle Scholar
  7. 7.
    Brannon-Peppas L, Blanchette JO (2004) Adv Drug Deliv Rev 56:1649–1659CrossRefGoogle Scholar
  8. 8.
    Barratt G (2003) Cell Mol Life Sci 60:21–37CrossRefGoogle Scholar
  9. 9.
    Pinto-Alphandary H, Andremont A, Couvreur P (2000) Int J Antimicrob Agents 13:155–168CrossRefGoogle Scholar
  10. 10.
    Murthy R, Reddy L (2006) Poly(alkyl cyanoacrylate) colloidal particles for delivery of anti-cancer drugs. In: Amiji MM (ed) Nanotechnology for cancer therapy. CRC, Boca Raton, pp 251–288Google Scholar
  11. 11.
    Ringe K, Walz C, Sabel B (2004) Nanoparticle drug delivery to the brain. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 7. American Scientific, Valencia, pp 91–104Google Scholar
  12. 12.
    Begley D, Bradbury M, Kreuter J (2000) The blood–brain barrier and drug delivery to the CNS. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Galton D, Israels L, Nabarro J, Till M (1965) BMJ II:1172Google Scholar
  14. 14.
    Hall A, Tilby M (1992) Blood Rev 6:163–173CrossRefGoogle Scholar
  15. 15.
    Owen W, Stewart P (1979) J Pharm Sci 68:992–996CrossRefGoogle Scholar
  16. 16.
    Ehrsson H, Eksborg S, Wallin I, Nilsson S (1980) J Pharm Sci 69:1091–1094CrossRefGoogle Scholar
  17. 17.
    Bosanquet A, Clarke H (1986) Cancer Chemother Pharmacol 18:176–179CrossRefGoogle Scholar
  18. 18.
    Chatterji D, Yeager R, Gallelli J (1982) J Pharm Sci 71:50–54CrossRefGoogle Scholar
  19. 19.
    Cullis P, Green R, Malone M (1995) J Chem Soc Perkin Trans 2:1503–1511Google Scholar
  20. 20.
    Salmaso S, Bersani S, Semenzato A, Caliceti P (2007) J Drug Target 15:379–390CrossRefGoogle Scholar
  21. 21.
    Reux B, Weber V, Galmier M, Borel M, Madesclaire M, Madelmont J, Debiton E, Coudert P (2008) Bioorganic Med Chem 16:5004–5020CrossRefGoogle Scholar
  22. 22.
    Pedersen P, Christensen M, Ruysschaert T, Linderoth L, Andresen T, Melander F, Mouritsen O, Madsen R, Clausen M (2009) J Med Chem 52:3408–3415CrossRefGoogle Scholar
  23. 23.
    Ganta S, Paxton J, Baguley B, Garg S (2008) Int J Pharm 360:115–121CrossRefGoogle Scholar
  24. 24.
    Sharma P, Ganta S, Denny W, Garg S (2009) Int J Pharm 367:187–194CrossRefGoogle Scholar
  25. 25.
    Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Adv Drug Deliv Rev 55:519–548CrossRefGoogle Scholar
  26. 26.
    Nicolas J, Couvreur P (2009) Wiley Interdiscipl Rev Nanomed Nanobiotechnol 1:111–127CrossRefGoogle Scholar
  27. 27.
    Donnelly E, Johnston D, Pepper D, Dunn D (1977) J Polym Sci Polym Lett Ed 15:399–405CrossRefGoogle Scholar
  28. 28.
    Behan N, Birkinshaw C (2000) Macromol Rapid Commun 21:884–886CrossRefGoogle Scholar
  29. 29.
    Behan N, Birkinshaw C, Clarke N (2001) Biomaterials 22:1335–1344CrossRefGoogle Scholar
  30. 30.
    Hawley A, Davis S, Illum L (1995) Adv Drug Deliv Rev 17:129–148CrossRefGoogle Scholar
  31. 31.
    Moghimi S, Bonnemain B (1999) Adv Drug Deliv Rev 37:295–312CrossRefGoogle Scholar
  32. 32.
    Nishioka Y, Yoshino H (2001) Adv Drug Deliv Rev 47:55–64CrossRefGoogle Scholar
  33. 33.
    Oussoren C, Storm G (2001) Adv Drug Deliv Rev 50:143–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Georgi G. Yordanov
    • 1
  • Zorka A. Bedzhova
    • 1
  • Ceco D. Dushkin
    • 1
  1. 1.Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of ChemistryUniversity of SofiaSofiaBulgaria

Personalised recommendations