Colloid and Polymer Science

, Volume 288, Issue 6, pp 653–663 | Cite as

A conformational investigation of zwitterionic surfactants in the micelle via 13C chemical shift measurements and 2D NOESY spectroscopy

  • Aleisha A. McLachlan
  • Kulbir Singh
  • D. Gerrard Marangoni
Original Contribution


The conformation and orientation of a series of zwitterionic surfactants (the alkyl-N,N-dimethylammoniopropanesulfonates, or Zwittergent® Detergents) has been studied via 13C chemical shift measurements and 2D NOESY spectroscopy. Chemical shift changes (Δδ values) support the tendency for the intercharge arm to adopt a ring-like orientation as the alkyl chain length increases. Protons of the headgroup regions for both the 8 carbon and the 10 carbon Zwittergent® appear to form a greater number of intermolecular interactions with headgroups of neighboring monomers in the micelle. Interactions between the end of the alkyl chain and the headgroup region of the 12 carbon Zwittergent® are also apparent from examination of the NOESY spectrum indicating that the tail folds back towards the surface of the micelle. These results indicate that a combination of the ring-like conformation of the intercharge arm along with crowding in the vicinity of the sulfonate group could explain why ZW3-12 appears to behave more as a cationic surfactant in previously studied mixed micellar systems.


Zwitterionic Surfactants 2D NOESY Chemical shifts 



The authors thank NSERC (Discovery Grant, D.G.M; Research Capacity Development Grant, StFX), the Atlantic Innovation Fund, and the StFX University Council for Research for financial support of this research.


  1. 1.
    Tsubone K, Uchida N, Mimura K (1990) J Am Oil Chem Soc 67:451–454CrossRefGoogle Scholar
  2. 2.
    La Mesa C, Sesta B, Bonicelli MG, Ceccaroni GF (1990) Langmuir 6:728–731CrossRefGoogle Scholar
  3. 3.
    Sesta B (1989) J Phys Chem 93:7677–7680. doi: 10.1021/j100359a029 CrossRefGoogle Scholar
  4. 4.
    Tsubone K, Uchida N, Niwase H, Honda K (1989) J Am Oil Chem Soc 66:829–833CrossRefGoogle Scholar
  5. 5.
    Hidaka H, Moriya M, Takai M (1979) J Am Oil Chem Soc 56:914–917CrossRefGoogle Scholar
  6. 6.
    Ernst R, Miller EJ (1982) Surface-active betaines. In: Bluestein BR, Hilton CL (eds) Amphoteric surfactants: surfactant science series. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Zajac J, Chorro C, Lindheimer M, Partyka S (1997) Langmuir 13:1486–1495. doi: 10.1021/la960926d CrossRefGoogle Scholar
  8. 8.
    Li F, Li G, Chen J (1998) Colloids Surf Physicochem Eng Aspects 145:167–174. doi: 10.1016/S0927-7757(98)00543-3 CrossRefGoogle Scholar
  9. 9.
    McLachlan AA, Marangoni DG (2006) J Colloid Interface Sci 295:243–248. doi: 10.1016/j.jcis.2005.08.008 CrossRefGoogle Scholar
  10. 10.
    Mullally MK, Marangoni DG (2004) Can J Chem 82:1223. doi: 10.1139/v04-022 CrossRefGoogle Scholar
  11. 11.
    Yokoyama T, Murakami G, Akashi H, Zenki M (2004) Analytical Sciences X-ray Structure Analysis Online 20:805–806. doi: 10.2116/analscix.20.x31 CrossRefGoogle Scholar
  12. 12.
    Boucher GD, MacDonald AC, Hawrylak BE, Marangoni DG (1998) Can J Chem 76:1266–1273CrossRefGoogle Scholar
  13. 13.
    Soderman O, Stilbs P, Price WS (2004) Concepts Magn Reson Part A 23A:121–135. doi: 10.1002/cmr.a.20022 CrossRefGoogle Scholar
  14. 14.
    Mazumdar S (1990) J Phys Chem 94:5947–5953. doi: 10.1021/j100378a062 CrossRefGoogle Scholar
  15. 15.
    Chachaty C (1987) Progess in NMR Spectroscopy 19:183–222. doi: 10.1016/0079-6565(87)80002-X CrossRefGoogle Scholar
  16. 16.
    Brycki B, Szafran M (1992) Magn Reson Chem 30:535–543. doi: 10.1002/mrc.1260300614 CrossRefGoogle Scholar
  17. 17.
    Persson B, Drakenberg T, Lindman B (1979) J Phys Chem 83:3011–3015. doi: 10.1021/j100486a015 CrossRefGoogle Scholar
  18. 18.
    Cheney BV, Grant DM (1967) J Am Chem Soc 89:5319–5327CrossRefGoogle Scholar
  19. 19.
    Corno C, Platone E, Ghelli S (1984) Colloid Polym Sci 262:667–669CrossRefGoogle Scholar
  20. 20.
    Desando M, McGarvey B, Reeves L (1996) J Colloid Interface Sci 181:331–336. doi: 10.1006/jcis.1996.0386 CrossRefGoogle Scholar
  21. 21.
    Gjerde MI, Nerdal W, Hoiland H (1996) J Colloid Interface Sci 183:285–288CrossRefGoogle Scholar
  22. 22.
    Landry J, Marangoni DG, Arden D, MacLennan I, Kwak JCT (2009) 12:155–164Google Scholar
  23. 23.
    Marangoni DG, Landry JM, Lumsden MD, Berno R (2007) Can J Chem 85:202–207. doi: 10.1139/V07-018 CrossRefGoogle Scholar
  24. 24.
    Hawrylak BE, Marangoni DG (1999) Can J Chem 77:1241–1244CrossRefGoogle Scholar
  25. 25.
    Mao SZ, Du YR (2003) Acta Physico-Chimica Sinica 19:675–680Google Scholar
  26. 26.
    Gao HC, Zhao S, Mao SZ, Yuan HZ, Yu JY, Shen LF, Du YR (2002) J Colloid Interface Sci 249:200–208CrossRefGoogle Scholar
  27. 27.
    Yuan HZ, Luo L, Zhang L, Zhao S, Mao SZ, Yu JY, Shen LF, Du YR (2002) Colloid Polym Sci 280:479–484CrossRefGoogle Scholar
  28. 28.
    Soderman O, Guering P (1987) Colloid Polym Sci 265:76–82. doi: 10.1007/BF01422668 CrossRefGoogle Scholar
  29. 29.
    Ahlnäs T, Söderman O (1984) Colloids Surf 12:125–135. doi: 10.1016/0166-6622(84)80094-3 CrossRefGoogle Scholar
  30. 30.
    Griffin RG, Powers L, Pershan PS (1978) Biochemistry (N Y) 17:2718–2722CrossRefGoogle Scholar
  31. 31.
    Faucompre B, Bouzerda M, Lindheimer M, Douillard JM, Partyka S (1994) J Therm Anal 41:1325–1333CrossRefGoogle Scholar
  32. 32.
    Faucompre B, Lindman B (1987) J Phys Chem 91:383–389CrossRefGoogle Scholar
  33. 33.
    Wüthrich K, Anonymous (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  34. 34.
    Nelson JH (2003) Nuclear magnetic resonance spectroscopy. Pearson, TorontoGoogle Scholar
  35. 35.
    Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, Hoboken, NJGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Aleisha A. McLachlan
    • 1
  • Kulbir Singh
    • 1
  • D. Gerrard Marangoni
    • 1
  1. 1.Department of ChemistrySt Francis Xavier UniversityAntigonishCanada

Personalised recommendations