Colloid and Polymer Science

, Volume 288, Issue 4, pp 449–459 | Cite as

Ca2+- and Mg2+-induced molecular interactions in a dehydrocholic acid/didodecyldimethylammonium bromide mixed monolayer

  • Paula V. Messina
  • Juan Manuel Ruso
  • Gerardo Prieto
  • Marcos D. Fernández-Leyes
  • Pablo C. Schulz
  • Félix Sarmiento
Original Contribution

Abstract

The aim of this article is the evaluation of Ca2+ and Mg2+ subphases presence effect on mixed monolayers composed by dehydrocholic acid (HDHC) and didodecyldimethylammonium bromide (DDAB). The monolayer stability was analyzed by the evaluation of thermodynamic parameters, ΔGmixE and α. At all calcium ion-tested concentration, the mixed systems XHDHC = 0.6 and 0.8 at π = 30 mJ m−2 were always the most favored proportions. The XHDHC = 0.6 system was also stable in magnesium presence, and the XHDHC = 0.2-mixed monolayer went through a stable to an unstable state as the content of Ca2+ or Mg2+ augment. Finally, the XHDHC = 0.4 monolayer showed a particular behavior, i.e., remained stable at low cation concentration, unstable at intermediate concentration and stable again at high concentration. The effect was similar at Mg2+ presence.

Keywords

Bile salts Air-solution interface Langmuir monolayers Divalent cations Monolayer stability 

References

  1. 1.
    St-Pierre MV, Kullak-Ublick GA, Haganbuch B, Meier PJ (2001) Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 204:1673–1686Google Scholar
  2. 2.
    Mukhopadhyay S, Maitra U (2004) Chemistry and biology of bile acids. Curr Sci 87(12):1666–1682Google Scholar
  3. 3.
    Ohtake S, Schebor C, Palecek SP, de Pablo JJ (2005) Phase behavior of freeze-dried phospholipid-cholesterol mixtures stabilized with trehalose. Biochim Biophys Acta (BBA)-Biomembr 1713(1):57–64CrossRefGoogle Scholar
  4. 4.
    Hjelm RP Jr, Thiyagarajan P, Alkan-Onyuksel H (1992) Organization of phosphatidylcholine and bile salt in rodlike mixed micelles. J Phys Chem 96(21):8653–8661CrossRefGoogle Scholar
  5. 5.
    Long AM, Kaler EW, Lee SP, Wingnall GD (1994) Characterization of lecithin-taurodeoxycholate mixed micelles using small-angle neutron scattering and static and dynamic light scattering. J Phys Chem 98(16):4402–4410CrossRefGoogle Scholar
  6. 6.
    Jiang L, Wang K, Deng M, Wang Y, Huang J (2008) Bile salt-induced vesicle to micelle transition in catanionic surfactant systems: steric and electrostatic interactions. Langmuir 24:4600–4606, and references thereinCrossRefGoogle Scholar
  7. 7.
    Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed 35:1154–1196CrossRefGoogle Scholar
  8. 8.
    Tanford C (1980) The hydrophobic effect. Wiley, New YorkGoogle Scholar
  9. 9.
    Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  10. 10.
    Paul S, Patey GN (2007) The influence of urea and trimethylamine-N-oxide on hydrophobic interactions. J Phys Chem B 111(28):7932–7933CrossRefGoogle Scholar
  11. 11.
    Messina PV, Ruso JM, Prieto G, Fernadez-Leyes M, Schulz P, Sarmiento F (2009) Thermodynamic and elastic fluctuation analysis of langmuir mixed monolayers composed by dehydrocholic acid (HDHC) and didodecyldimethylammonium bromide (DDAB). Colloids Surf B Biointerfaces 75:34–41CrossRefGoogle Scholar
  12. 12.
    Gonzales YI, Nakanishi H, Stjerndahl M, Kaler EW (2005) Influence of pH on the micelle-to-vesicle transition in aqueous mixtures of sodium dodecyl benzenesulfonate with histidine. J Phys Chem B 109(23):11675–11682CrossRefGoogle Scholar
  13. 13.
    Renoncourt A, Vlachy N, Bauduin P, Drechsler M, Touraud D, Verbavatz JM, Dubois M, Kunz W, Ninham BW (2007) Specific alkali cation effects in the transition from micelles to vesicles through salt addition. Langmuir 23(5):2376–2381CrossRefGoogle Scholar
  14. 14.
    Ho SW, Jung D, Calhoun JR, Lear JD, Okon M, Scout WR, Hancock RE, Straus SK (2008) Effect of divalent cations on the structure of antibiotic daptomycin. Eur Biophys J 37(4):421–433CrossRefGoogle Scholar
  15. 15.
    Akashi K, Miyata H, Itoh H, Kinosita K Jr (1998) Formulation of giant liposomes promoted by divalent catiions: critical role of electrostatic repulsion. Biophys J 74(6):2973–2982CrossRefGoogle Scholar
  16. 16.
    Uhriková D, Kucerka N, Teixeira J, Gordeliy V, Balgavý P (2008) Structural changes in dipalmitoylphosphatidylcholine bilayer promoted by Ca2+ ions: a small-angle neutron scattering study. Chem Phys Lipids 155(2):80–89CrossRefGoogle Scholar
  17. 17.
    Cabrerizo-Vilchez MA, Wege HA, Holgado-Terriza JA, Neumann AW (1999) Axisymmetric drop shape analysis as penetration Langmuir balance. Rev Sci Instrum 70(5):2438–2444CrossRefGoogle Scholar
  18. 18.
    Wege HA, Holgado-Terriza JA, Cabrerizo-Vílchez MA (2002) Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis. J Colloid Interf Sci 249:263–273CrossRefGoogle Scholar
  19. 19.
    Taylor JR (1982) An introduction to error analysis: the study of uncertainties in physical measurements. University Science Books, Sausalito-California. ISBN: 0935702075Google Scholar
  20. 20.
    Harkins WD (1954) The physical chemistry of surface films. Reinhold Publishing Co., New York, p 107Google Scholar
  21. 21.
    Gaines GL (1966) Insoluble monolayers at liquid gas interfaces. Wiley Interscience, New YorkGoogle Scholar
  22. 22.
    Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Gau CS, Yu H, Zografi G (1994) Surface viscoelasticity of β-casein monolayers at the air/water interface by electrocapillary wave diffraction. J Colloid Interf Sci 162(1):214–221CrossRefGoogle Scholar
  24. 24.
    Birdi KS (1989) Lipid and biopolymer monolayer at liquid interfaces. Plenun Press, New YorkGoogle Scholar
  25. 25.
    Tadros KDY, Deol B, Vollhardt H, Miller D, Cabrerizo-Vilchez MA R, Neumann AW (1996) Axisymmetric drop shape analysis as a film balance: rate dependence of the collapse pressure and molecular area at close packing of 1-octadecanol monolayers. Langmuir 12(7):1851–1859CrossRefGoogle Scholar
  26. 26.
    Broniatowski M, Dynarowicz-Lątka P (2006) Semifluorinated chains at the air/water interface: studies of the interaction of a semifluorinated alkane with fluorinated alcohols in mixed langmuir monolayers. Langmuir 22(6):2691–2696CrossRefGoogle Scholar
  27. 27.
    Rodríguez-Niño R, Carrera CS, Rodríguez-Patino JM (1999) Interfacial characteristics of β-casein spread films at the air–water interface. Colloids Surf B Biointerfaces 12(3–6):161–173CrossRefGoogle Scholar
  28. 28.
    Peng JB, Barness GT, Gentle IR (2001) The structures of Langmuir–Blodgett films of fatty acids and their salts. Adv Colloid Interface Sci 91(2):163–219CrossRefGoogle Scholar
  29. 29.
    Dynarowicz P, Romeo NV, Miñones Trillo J (1998) Stability of dialkyldimethylammonium bromides monolayers spread at the water/air interface. Colloid Surf A: Physicochem Eng Asp 131(1–3):249–256CrossRefGoogle Scholar
  30. 30.
    Viseu MI, Gonçalves da Silva AM, Costa SMB (2001) Reorganization and desorption of catanionic monolayers. Kinetics of π−t and At relaxation. Langmuir 17(5):1529–1537CrossRefGoogle Scholar
  31. 31.
    Hato M, Minamikawa H, Okamoto K (1993) Monolayers of ω-hydroxyalkyldimethyloctadecylammonium bromide at water-air interface. J Colloid Interface Sci 161(1):155–162CrossRefGoogle Scholar
  32. 32.
    Fahey DA, Carey MC, Donovan JM (1995) Bile acid/phosphatidylcholine interactions in mixed monomolecular layers: differences in condensation effects but not interfacial orientation between hydrophobic and hydrophilic bile acid species. Biochemistry 34:10886–10897CrossRefGoogle Scholar
  33. 33.
    Schulz P, Messina P, Morini M, Vuano B (2002) Potentiometric studies on sodium dehydrocholate micelles. Colloid Polym Sci 280:1104–1109CrossRefGoogle Scholar
  34. 34.
    Vlachy N, Jagoda-Cwiklik B, Vácha R, Touraud D, Jungwirth P, Kunz W (2009) Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv Colloid Interface Sci 146:42–47CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663CrossRefGoogle Scholar
  36. 36.
    Collins KD (2004) Ions from the Hofmeister series and omolytes:effects on proteins in solution and in the crystallization process. Methods 34:300–311CrossRefGoogle Scholar
  37. 37.
    Alimenti G, Messina P, Morini MA, Schulz PC (2003) Evaporation studies on sodium dehydrocholate aqueous solution. Colloid Polym Sci 282:170–176CrossRefGoogle Scholar
  38. 38.
    Sugihara G, Tanaka M (1978) Micelle formation of bile acids salts. Hyomen 16(9):537–554Google Scholar
  39. 39.
    Bock CW, Kaufman A, Glusker JP (1994) Coordination of water to magnesium cations. Inorg Chem 33(3):419–427CrossRefGoogle Scholar
  40. 40.
    Chen KB, Chang CH, Yang YM, Maa JR (2000) On the interaction of dipalmitoyl phosphatidylcholine with normal long-chain alcohols in a mixed monolayer: a thermodynamic study. Colloids Surf A 170(2–3):199–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Paula V. Messina
    • 1
  • Juan Manuel Ruso
    • 2
  • Gerardo Prieto
    • 3
  • Marcos D. Fernández-Leyes
    • 1
  • Pablo C. Schulz
    • 1
  • Félix Sarmiento
    • 3
  1. 1.Departamento de QuímicaUniversidad Nacional del Sur. CONICET-INQUISURBahía BlancaArgentina
  2. 2.Soft Matter and Molecular Biophysics Group, Departamento de Física Aplicada, Facultade de FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaEspaña
  3. 3.Biophysics and Interfaces Group, Departamento de Física Aplicada, Facultade de FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaEspaña

Personalised recommendations