Skip to main content
Log in

Templated assembly of polymer particles into mesoscopic clusters with well-defined configurations

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report on the fabrication of colloidal clusters through the combination of spherical particles. Polystyrene latex particles bearing amino groups on their surface were used as building blocks of the clusters. Packing of these particles with diameters of 91 and 154 nm into assemblies with defined configurations was accomplished using narrow dispersed emulsion droplets as templates. The building blocks of the clusters adhered to the oil–water interphase due to the Pickering effect. Subsequent evaporation of the dispersed phase forced them to pack into small clusters. Addition of the particles via the dispersed phase led to higher yields of clusters than if the building blocks were added via the continuous phase. All clusters had well-defined configurations. Because the dimensions of these clusters were below 400 nm, the colloidal assemblies underlay Brownian motion, which resulted in stable suspensions. The number and yields of different species could be controlled via the concentration of the building blocks and surfactant within the emulsions. Moreover, the nature of the dispersed phase itself had a strong impact on the cluster formation. When cyclohexane was used as the dispersed phase, predominately, particle doublets and triplets were obtained. The use of toluene-in-water emulsions resulted into a broader spectrum of clusters of up to 12 constituents. Such clusters could satisfy the demand for particles with complex but defined shapes and special symmetries for the fabrication of novel hierarchically organized materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edwards EW, Wang D, Möhwald H (2007) Hierarchical organization of colloidal particles: from colloidal crystallization to supraparticle chemistry. Macromol Chem Phys 208:439–445

    Article  CAS  Google Scholar 

  2. Yang S-M, Kim S-H, Lim J-M, Yi G-R (2008) Synthesis and assembly of structured colloidal particles. J Mater Chem 18:2177–2190

    Article  CAS  Google Scholar 

  3. Lange B, Metz N, Tahir MN, Fleischhaker F, Theato P, Schroeder H-C, Mueller WEG, Tremel W, Zentel R (2007) Functional polymer-opals from core-shell colloids. Macromol Rapid Commun 28:1987–1994

    Article  CAS  Google Scholar 

  4. Velev OD, Lenhoff AM (2000) Colloidal crystals as templates for porous materials. Curr Opin Colloid Interface Sci 5:56–63

    Article  CAS  Google Scholar 

  5. Zeng F, Wu S, Tang T, Sun Z, Wang C, Liu X, Tong Z (2004) Preparation of colloidal crystals with polyhedral building blocks through post-polymerization. Colloid Polym Sci 282:651–655

    Article  CAS  Google Scholar 

  6. Velikov KP, Christova CG, Dullens RPA, van Blaaderen A (2002) Layer-by-layer growth of binary colloidal crystals. Science 296:106–109

    Article  CAS  Google Scholar 

  7. Hynninen AP, Christova CG, van Roij R, van Blaaderen A, Dijkstra M (2006) Prediction and observation of crystal structures of oppositely charged colloids. Phys Rev Lett 96:138308/138301-138308/138304

  8. Leunissen ME, Christova CG, Hynninen A-P, Royall CP, Campbell AI, Imhof A, Dijkstra M, van Roij R, van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240

    Article  CAS  Google Scholar 

  9. Fleischhaker F, Arsenault AC, Kitaev V, Peiris FC, von Freymann G, Manners I, Zentel R, Ozin GA (2005) Photochemically and thermally tunable planar defects in colloidal photonic crystals. J Am Chem Soc 127:9318–9319

    Article  CAS  Google Scholar 

  10. Hellweg T (2009) Towards large-scale photonic crystals with tuneable bandgaps. Angew Chem Int Ed 48:6777–6778

    Article  CAS  Google Scholar 

  11. Hynninen A-P, Thijssen JHJ, Vermolen ECM, Dijkstra M, van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205

    Article  CAS  Google Scholar 

  12. Huang J, Hu X, Zhang W, Zhang Y, Li G (2008) Ph and ionic strength responsive photonic polymers fabricated by using colloidal crystal templating. Colloid Polym Sci 286:113–118

    Article  CAS  Google Scholar 

  13. Li J, Xue L, Wang Z, Han Y (2007) Colloidal photonic crystals with a graded lattice-constant distribution. Colloid Polym Sci 285:1037–1041

    Article  CAS  Google Scholar 

  14. Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20:738–755

    Article  CAS  Google Scholar 

  15. Yan F, Goedel WA (2004) A simple and effective method for the preparation of porous membranes with three-dimensionally arranged pores. Adv Mater 16:911–915

    Article  CAS  Google Scholar 

  16. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  17. Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres. Langmuir 12:2374–2384

    Article  CAS  Google Scholar 

  18. Texter J (2009) Templating hydrogels. Colloid Polym Sci 287:313–321

    Article  CAS  Google Scholar 

  19. Kim S-H, Lee SY, Yi G-R, Pine DJ, Yang S-M (2006) Microwave-assisted self-organization of colloidal particles in confining aqueous droplets. J Am Chem Soc 128:10897–10904

    Article  CAS  Google Scholar 

  20. Moon JH, Yi G-R, Yang S-M, Pine DJ, Park SB (2004) Electrospray-assisted fabrication of uniform photonic balls. Adv Mater 16:605–609

    Article  CAS  Google Scholar 

  21. Cho Y-S, Yi G-R, Kim S-H, Elsesser MT, Breed DR, Yang S-M (2008) Homogeneous and heterogeneous binary colloidal clusters formed by evaporation-induced self-assembly inside droplets. J Colloid Interface Sci 318:124–133

    Article  CAS  Google Scholar 

  22. Manoharan VN, Elsesser MT, Pine DJ (2003) Dense packing and symmetry in small clusters of microspheres. Science 301:483–487

    Article  CAS  Google Scholar 

  23. Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 2. Ball-like and composite aggregates. Langmuir 12:2385–2391

    Article  CAS  Google Scholar 

  24. Zerrouki D, Rotenberg B, Abramson S, Baudry J, Goubault C, Leal-Calderon F, Pine DJ, Bibette J (2006) Preparation of doublet, triangular, and tetrahedral colloidal clusters by controlled emulsification. Langmuir 22:57–62

    Article  CAS  Google Scholar 

  25. van Blaaderen A (2006) Materials science: colloids get complex. Nature 439:545–546

    Article  Google Scholar 

  26. Hong L, Cacciuto A, Luijten E, Granick S (2006) Clusters of charged janus spheres. Nano Lett 6:2510–2514

    Article  CAS  Google Scholar 

  27. Binks BP, Horozov T (2006) Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Boneva MP, Christov NC, Danov KD, Kralchevsky PA (2007) Effect of electric-field-induced capillary attraction on the motion of particles at an oil–water interface. Phys Chem Chem Phys 9:6371–6384

    Article  CAS  Google Scholar 

  29. Tarimala S, Dai LL (2004) Structure of microparticles in solid-stabilized emulsions. Langmuir 20:3492–3494

    Article  CAS  Google Scholar 

  30. Horozov TS, Aveyard R, Clint JH, Binks BP (2003) Order–disorder transition in monolayers of modified monodisperse silica particles at the octane–water interface. Langmuir 19:2822–2829

    Article  CAS  Google Scholar 

  31. Manoharan VN (2006) Colloidal spheres confined by liquid droplets: geometry, physics, and physical chemistry. Solid State Commun 139:557–561

    Article  CAS  Google Scholar 

  32. Yi G-R, Thorsen T, Manoharan VN, Hwang M-J, Jeon S-J, Pine DJ, Quake SR, Yang S-M (2003) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304

    Article  CAS  Google Scholar 

  33. Wagner CS, Lu Y, Wittemann A (2008) Preparation of submicrometer-sized clusters from polymer spheres using ultrasonication. Langmuir 24:12126–12128

    Article  CAS  Google Scholar 

  34. Hoffmann M, Wagner CS, Harnau L, Wittemann A (2009) 3d brownian diffusion of submicron-sized particle clusters. ACS Nano 3:3326–3334

    Article  CAS  Google Scholar 

  35. Laidlaw I, Steinmetz M (2005) Introduction to differential sedimentation. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation. The Royal Society of Chemistry, Cambridge, pp 270–290

    Google Scholar 

  36. Frisken BJ (2001) Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Optics 40:4087–4091

    Article  CAS  Google Scholar 

  37. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757

    Article  CAS  Google Scholar 

  38. Landfester K (2001) Polyreactions in miniemulsions. Macromol Rapid Commun 22:896–936

    Article  Google Scholar 

  39. Wang ST, Schork FJ, Poehlein GW, Gooch JW (1996) Emulsion and miniemulsion copolymerization of acrylic monomers in the presence of alkyd resin. J Appl Polym Sci 60:2069–2076

    Article  CAS  Google Scholar 

  40. Ju RTC, Frank CW, Gast AP (1992) Contin analysis of colloidal aggregates. Langmuir 8:2165–2171

    Article  CAS  Google Scholar 

  41. Abismail B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (2000) Emulsification processes: on-line study by multiple light scattering measurements. Ultrason Sonochem 7:187–192

    Article  CAS  Google Scholar 

  42. Dresselhaus MS, Dresselhaus G, Jorio A (2008) Group theory: application to the physics of condensed matter. Springer-Verlag, Heidelberg

    Google Scholar 

  43. Cho Y-S, Yi G-R, Chung YS, Park SB, Yang S-M (2007) Complex colloidal microclusters from aerosol droplets. Langmuir 23:12079–12085

    Article  CAS  Google Scholar 

  44. Arkus N, Manoharan VN, Brenner MP (2009) Minimal energy clusters of hard spheres with short range attractions. Phys Rev Lett 103:118303/118301-118303/118304

  45. Tadros TF (2009) Emulsion sciene and technology: a general introduction. In: Tadros TF (ed) Emulsion science and technology. Wiley-VCH, Weinheim, pp 1–56

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors appreciate the help of Ingrid Otto, Christoph Hanske and Thomas Gegenhuber during LSCM and DLS measurements. Financial support from the Deutsche Forschungsgemeinschaft (DFG) within SFB 840, the Fonds der Chemischen Industrie (FCI), and the Dr. Otto Röhm Gedächtnisstiftung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wittemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C.S., Fischer, B., May, M. et al. Templated assembly of polymer particles into mesoscopic clusters with well-defined configurations. Colloid Polym Sci 288, 487–498 (2010). https://doi.org/10.1007/s00396-009-2169-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2169-y

Keywords

Navigation