Colloid and Polymer Science

, Volume 288, Issue 3, pp 257–263 | Cite as

Formation of organically and inorganically passivated CdS nanoparticles in reverse microemulsions

  • Joachim Koetz
  • Kornelia Gawlitza
  • Sabine Kosmella
Original Contribution


This paper is focused on the formation of organically and inorganically passivated cadmium sulfide (CdS) nanoparticles in two different types of microemulsions. On the one hand, we used a ternary inverse microemulsion consisting of water, heptanol, and 3-(N,N-dimethyldodecylammonio)propanesulfonate and on the other hand, a poly(ethyleneimine)-based quaternary microemulsion containing water, toluene, pentanol, and sodium dodecylsulfate. UV-vis measurements confirm the formation of CdS-ZnS core-shell nanoparticles in the ternary microemulsion. Using the quaternary microemulsion template phase, polymer capped luminescent CdS nanoparticles can be formed. After a complete solvent evaporation, the nanoparticles are redispersed in water and characterized by means of dynamic light scattering and transmission electron microscopy. From the ternary microemulsion, well-stabilized CdS-ZnS core-shell nanoparticles with diameters of about 5 nm can be redispersed, but from the quaternary microemulsion, only nanoparticle aggregates of about 100 nm.


Microemulsions Core-shell nanoparticles Cadmium sulfide Zinc sulfide Polymer capped nanoparticles 



The authors are thankful to Brigitte Tiersch and Sibylle Rüstig (University of Potsdam) for the TEM micrographs and Andre Laschewsky and Hans-Gerd Löhmannsröben (University of Potsdam) for providing access to the UV-vis NIR and fluorescence spectrophotometer.


  1. 1.
    Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Nanotechnol 17(18):4736CrossRefGoogle Scholar
  2. 2.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  3. 3.
    Wei C, Grouquist D, Roark J (2002) JNN 2(1):47Google Scholar
  4. 4.
    Matsui I (2005) J Chem Eng Jpn 38(8):535CrossRefGoogle Scholar
  5. 5.
    Nie SM, Xing Y, Kim GJ, Simons JW (2007) Annu Rev Biomed Eng 9:257CrossRefGoogle Scholar
  6. 6.
    Rhyner MN, Smith AM, Gao XH, Mao H, Yang LL, Nie SM (2006) Nanomedicine 1(2):209CrossRefGoogle Scholar
  7. 7.
    Santra S, Xu JS, Wang KM, Tan WH (2004) J Nanosci Nanotechnol 4(6):590CrossRefGoogle Scholar
  8. 8.
    Serpone N, Khairutdinov RF (1997) Semiconductor nanoclusters-physical chemical catalylical aspects studies. Surf Sci Catal 103:417CrossRefGoogle Scholar
  9. 9.
    Zou JJ, Chen C, Liu CJ, Zhang YP, Han Y, Cui L (2005) Mater Lett 59(27):3437CrossRefGoogle Scholar
  10. 10.
    Zhang WU, Zhong Y, Fan J, Sun SQ, Tang N, Tan MY, Wu LM (2003) Sci China Ser B 46(2):196CrossRefGoogle Scholar
  11. 11.
    Brus LE (1983) J Chem Phys 79(11):5566CrossRefGoogle Scholar
  12. 12.
    Brus LE (1984) J Chem Phys 80(9):4403CrossRefGoogle Scholar
  13. 13.
    Henglein A (1989) Chem Rev 89:1861CrossRefGoogle Scholar
  14. 14.
    Weller H (1993) Angew Chem Int Ed Engl 32:41CrossRefGoogle Scholar
  15. 15.
    Qu L, Peng X (2002) J Am Chem Soc 124:2049CrossRefGoogle Scholar
  16. 16.
    Talapin DV, Rogach AL, Konowski A, Haase M, Weller H (2001) Nano Lett 1:207CrossRefGoogle Scholar
  17. 17.
    Hines MA, Guyot-Sionnest P (1998) J Phys Chem B 102:3655CrossRefGoogle Scholar
  18. 18.
    Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) Nano Lett 1:3CrossRefGoogle Scholar
  19. 19.
    Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Nanotechnology 15:S240CrossRefGoogle Scholar
  20. 20.
    Mekis I, Talapin DV, Konowski A, Haase M, Weller H (2003) J Phys Chem B 107:7454CrossRefGoogle Scholar
  21. 21.
    Ethayaraja M, Ravikumar C, Muthukumaran D, Dutta K, Bandyopadhyaya R (2007) J Phys Chem C 111:3246CrossRefGoogle Scholar
  22. 22.
    Zhou HS, Honma I, Komiyama H, Haus JW (1993) J Phys Chem 97:895CrossRefGoogle Scholar
  23. 23.
    Hasselbarth H, Eychmuller A, Eichberger R, Giersig M, Mews A, Weller H (1993) J Phys Chem 97:5333CrossRefGoogle Scholar
  24. 24.
    Lifshitz E, Dag I, Litvin I, Hodes G, Gorer S, Reisfeld R, Zelner M, Minti H (1998) Chem Phys Lett 288(2–4):188CrossRefGoogle Scholar
  25. 25.
    Bhattacharjee B, Ganguli D, Chaudhuri S, Pal AK (2003) Mater Chem Phys 78(2):372CrossRefGoogle Scholar
  26. 26.
    Li Y, Huang FZ, Zhang QM, Gu ZN (2000) J Mater Sci 35(23):5933CrossRefGoogle Scholar
  27. 27.
    Lu QY, Gao F, Zhao DY (2002) Nanotechnol 13(6):741CrossRefGoogle Scholar
  28. 28.
    Yin YD, Xu XL, Ge XW, Lu Y, Zhang ZC (1999) Radiat Phys Chem 55(3):353CrossRefGoogle Scholar
  29. 29.
    Shao MW, Li Q, Xie B, WU J, Qian YT (2003) Mater Chem Phys 78(1):288CrossRefGoogle Scholar
  30. 30.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706CrossRefGoogle Scholar
  31. 31.
    Hamley IW (2003) Nanotechnol 14(10):39CrossRefGoogle Scholar
  32. 32.
    Moffit M, Vali H, Eisenberg A (1998) Chem Mater 10(4):1021CrossRefGoogle Scholar
  33. 33.
    Zhang JG, Xu SQ, Kumacheva E (2004) J Am Chem Soc 126(25):7908CrossRefGoogle Scholar
  34. 34.
    Mandal D, Chatterjee U (2007) J Chem Phys 126:134507CrossRefGoogle Scholar
  35. 35.
    Towey TF, Khan-Lodhi A, Robinson BH (1990) J Chem Soc Faraday Trans 86(22):3757CrossRefGoogle Scholar
  36. 36.
    Agostiano A, Catalano M, Curri ML, Della Monica M, Manna L, Vasanelli L (2000) Micron 31:253CrossRefGoogle Scholar
  37. 37.
    Caponetti E, Pedone L, Chillura Martino D, Panto V, Turco Liveri V (2003) Mater Sci Eng C 23:531Google Scholar
  38. 38.
    Khiew PS, Radiman S, Huang NM, Soot Ahmad M (2003) J Cryst Growth 254:235Google Scholar
  39. 39.
    Khiew PS, Huang NM, Radiman S, Soot Ahmad M (2004) Mater Lett 58:516CrossRefGoogle Scholar
  40. 40.
    Capek I (2004) Adv Colloid Interface Sci 110(1–2):49CrossRefGoogle Scholar
  41. 41.
    Eastoe J, Hollamby MJ, Hudson L (2006) Adv Colloid Interface Sci 128:5CrossRefGoogle Scholar
  42. 42.
    Petit C, Jain TK, Billoudet F, Pileni MP (1994) Langmuir 10:4446CrossRefGoogle Scholar
  43. 43.
    Fletcher PDI, Howe AM, Robinson BH (1987) J Chem Soc Faraday Trans 83(1):985Google Scholar
  44. 44.
    Niemann B, Veit P, Sundmacher K (2008) Langmuir 24:4320CrossRefGoogle Scholar
  45. 45.
    Curri ML, Agostiano A, Manna L, Della Monica M, Catalano M, Chiavarone L, Spagnolo V, Lugara M (2000) J Phys Chem B 104(35):8391CrossRefGoogle Scholar
  46. 46.
    Koetz J, Bahnemann J, Lucas G, Tiersch B, Kosmella S (2004) Colloids Surf A 250(1–3):423CrossRefGoogle Scholar
  47. 47.
    Koetz J, Baier J, Kosmella S (2007) Colloid Polym Sci 285(15):1719CrossRefGoogle Scholar
  48. 48.
    Baier J, Koetz J, Kosmella S, Tiersch B, Rehage H (2007) J Phys Chem B 111:8612CrossRefGoogle Scholar
  49. 49.
    Note C, Koetz J, Wattebled L, Laschewsky A (2007) J Colloid Interface Sci 308:162CrossRefGoogle Scholar
  50. 50.
    Sato H, Hirai T, Komasawa I (1995) Ind Eng Chem Res 34(7):2493CrossRefGoogle Scholar
  51. 51.
    Note C, Kosmella S, Koetz J (2006) J Colloid Interface Sci 302:662CrossRefGoogle Scholar
  52. 52.
    Lutter S, Koetz J, Tiersch B, Kosmella S (2008) Progress Colloid Polym Sci 134:149Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Joachim Koetz
    • 1
  • Kornelia Gawlitza
    • 1
  • Sabine Kosmella
    • 1
  1. 1.Institut für ChemieUniversität PotsdamPotsdam (Golm)Germany

Personalised recommendations