Colloid and Polymer Science

, 288:79 | Cite as

Fabrication of multiwalled carbon nanotube-wrapped magnetic carbonyl iron microspheres and their magnetorheology

Short Communication


Magnetorheological (MR) properties and dispersion stability of magnetic carbonyl iron (CI) microspheres were examined and found to be enhanced by fabricating a dense nest composed of multiwalled carbon nanotubes (MWCNTs) on the surface of CI particles in this study. The coating process is achieved by using 4-aminobenzoic acid as a grafting agent via self-assembly mechanism under sonication in which the MWCNTs were adopted as the coating material because MWCNTs possess similar density with polymer but better magnetic properties due to the iron catalyst originally included within the walls. The coating thickness and morphology of the MWCNTs nest were found to be related with the sonication duration. The influence of the coating layers on the magnetic properties and MR performance (yield stress behavior, shear viscosity) were examined using a vibrating sample magnetometer and rotational rheometer. Sedimentation rates of the fabricated MWCNT/CI suspension and pure CI suspension were also investigated.


Magnetorheological fluid Carbonyl iron Multiwalled carbon nanotube Sedimentation 



This study was supported by a grant from Inha University (2009) via the GU8 program.


  1. 1.
    See H (2003) Colloid Polym Sci 281:788CrossRefGoogle Scholar
  2. 2.
    Bica I, Choi HJ (2008) Int J Mod Phys B 22:5041CrossRefGoogle Scholar
  3. 3.
    Klingenberg DJ (2001) AIChE J 47:246CrossRefGoogle Scholar
  4. 4.
    Svasand E, de Lange Kristiansen K, Martinsen OG, Helgesen G, Grimnes S, Skjeltorp AT (2009) Colloids Surf A 339:211CrossRefGoogle Scholar
  5. 5.
    Choi HJ, Jhon MS (2009) Soft Matter 5:1562CrossRefGoogle Scholar
  6. 6.
    Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Polymer 49:4413CrossRefGoogle Scholar
  7. 7.
    Fang FF, Kim JH, Choi HJ, Kim CA (2009) Colloid Polym Sci 287:745CrossRefGoogle Scholar
  8. 8.
    Cheng YC, Guo JJ, Xu GJ, Cui P, Liu XH, Liu FH, Wu JH (2008) Colloid Polym Sci 286:1493CrossRefGoogle Scholar
  9. 9.
    Hong CH, Sung JH, Choi HJ (2009) Colloid Polym Sci 287:583CrossRefGoogle Scholar
  10. 10.
    Brand HR, Pleiner H (2000) Phys Rev Lett 86:1385CrossRefGoogle Scholar
  11. 11.
    Bica I (2008) J Ind Eng Chem 14:230Google Scholar
  12. 12.
    Ekwebelam CC, See H (2008) Korea Aust Rheol J 20:35Google Scholar
  13. 13.
    Bossis G, Khuzir P, Lacis S, Volkova O (2003) J Magn Magn Mater 258–259:456CrossRefGoogle Scholar
  14. 14.
    Kanno H, Shimada K, Ogawa J, Inoue N (2007) Int J Appl Electrom 25:10Google Scholar
  15. 15.
    Park BJ, Hong MK, Choi HJ (2009) Colloid Polym Sci 287:501CrossRefGoogle Scholar
  16. 16.
    Yang Y, Li L, Chen G, Liu E (2008) J Magn Magn Mater 320:2030CrossRefGoogle Scholar
  17. 17.
    Jang IB, Kim HB, Lee JY, You JL, Choi HJ, Jhon MS (2005) J Appl Phys 97: article no. 10Q912Google Scholar
  18. 18.
    de Vicente J, López-López MT, Durán JDG, González-Caballero F (2004) Rheol Acta 44:94CrossRefGoogle Scholar
  19. 19.
    Tang X, Zhang X, Tao R, Rong Y (2000) J Appl Phys 87:2634CrossRefGoogle Scholar
  20. 20.
    de Vicente J, López-López MT, González-Caballero F, Durán JDG (2003) J Rheol 47:1093CrossRefGoogle Scholar
  21. 21.
    Lim ST, Cho MS, Jang IB, Choi HJ (2004) J Magn Magn Mater 282:170CrossRefGoogle Scholar
  22. 22.
    Lim ST, Choi HJ, Jhon MS (2005) IEEE Trans Magn 41:3745CrossRefGoogle Scholar
  23. 23.
    Fang FF, Jang IB, Choi HJ (2007) Diam Relat Mater 16:1167CrossRefGoogle Scholar
  24. 24.
    Wu WP, Zhao BY, Wu Q, Chen LS, Hu KA (2006) Smart Mater Struct 15:N94CrossRefGoogle Scholar
  25. 25.
    Lee MA, Fang FF, Choi HJ (2007) Phys Status Solidi A 204:4186CrossRefGoogle Scholar
  26. 26.
    Fang FF, Liu YD, Choi HJ (2009) IEEE Trans Magn 45:2507CrossRefGoogle Scholar
  27. 27.
    Cho MS, Lim ST, Jang IB, Choi HJ, Jhon MS (2004) IEEE Trans Magn 40:3036CrossRefGoogle Scholar
  28. 28.
    Fang FF, Choi HJ (2007) Phys Status Solidi A 204:4190CrossRefGoogle Scholar
  29. 29.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194CrossRefGoogle Scholar
  30. 30.
    Sano M, Kamino A, Okamura J, Shinkai S (2002) Nano Lett 2:531CrossRefGoogle Scholar
  31. 31.
    Sun YP, Fu K, Lin Y, Huang W (2002) Acc Chem Res 35:1096CrossRefGoogle Scholar
  32. 32.
    Yu F, Yao K, Shi L, Wan W, Zhong Q, Fu Y, You X (2007) Chem Mater 19:3412CrossRefGoogle Scholar
  33. 33.
    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Macias FR, Shon Y, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253CrossRefGoogle Scholar
  34. 34.
    Jeong SH, Lee OJ, Lee KH (2002) Chem Mater 14:1859CrossRefGoogle Scholar
  35. 35.
    Wereley NM, Chaudhuri AJ, Yoo H, John S, Kotha S, Suggs A, Radhakrishnan R, Love B, Sudarshan JTS (2006) J Intell Mater Syst Struct 17:393CrossRefGoogle Scholar
  36. 36.
    Rankin PJ, Horvath AT, Klingenberg DJ (1999) Rheol Acta 38:471CrossRefGoogle Scholar
  37. 37.
    Kim SG, Kim JW, Jang WH, Choi HJ, Jhon MS (2001) Polymer 42:5005CrossRefGoogle Scholar
  38. 38.
    Wollny K, Läuger J, Huck S (2002) Appl Rheol 12:25Google Scholar
  39. 39.
    Uhlherr PHT, Guo J, Fang TN, Tiu C (2002) Korea Aust Rheol J 14:17Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations