Colloid and Polymer Science

, 287:1481 | Cite as

Shear thickening in polymer stabilized colloidal suspensions

Short Communication

Abstract

This paper adopts a previously developed activation model of shear thickening, published by the authors to sterically stabilized colloidal suspensions. When particles arranged along the compression axis of a sheared suspension, they may overcome the repulsive interaction and form hydroclusters associated with shear thickening. Taking advantage of the total interaction potential of polymeric brush coating and van der Waals attraction, the applicability of the activation model is shown within the validity range of a continuum theory. For the comparison with an extensive experimental investigation, where some parameters are not available, the onset of shear thickening can be predicted with realistic assumptions of the model parameters.

Keywords

Suspensions Shear thickening Activation model Steric stabilization 

References

  1. 1.
    Bender JW, Wagner NJ (1989) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 33:329–366Google Scholar
  2. 2.
    Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChE J 36:321–332CrossRefGoogle Scholar
  3. 3.
    Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129CrossRefGoogle Scholar
  4. 4.
    Cates ME, Wittmer JP, Bouchaud J-P, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81:1841–1844CrossRefGoogle Scholar
  5. 5.
    Crowl VT, Malati MA (1966) Adsorption of polymers and the stability of pigment dispersions. Discuss Faraday Soc 42:301–312CrossRefGoogle Scholar
  6. 6.
    D’Haene P (1992) Rheology of Polymerically Stabilized Suspensions (Katholieke Universiteit Leuven)Google Scholar
  7. 7.
    Derjaguin BV, Landau LD (1941) Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Acta Physicochim URSS 14:633–652Google Scholar
  8. 8.
    Frith WJ, Strivens TA, Mewis J (1990) Dynamic mechanical properties of polymerically stabilized dispersions. J Colloid Interface Sci 139:55–62CrossRefGoogle Scholar
  9. 9.
    Frith WJ, D’Haene PJ, Buscall R, Mewis J (1996) Shear thickening in model suspensions of sterically stabilized Particles. J Rheol 40:531–548CrossRefGoogle Scholar
  10. 10.
    Fritz G, Schädler V, Willenbacher N, Wagner NJ (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18 6381Google Scholar
  11. 11.
    Grover GS, Bike SG (1995) Monitoring flocculation in situ in sterically stabilized silica dispersions using rheological techniques. Langmuir 11(5):1807–1812Google Scholar
  12. 12.
    Hoffman RL (1974) Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J Coll Interface Sci 46:491–506CrossRefGoogle Scholar
  13. 13.
    Hoffman RL (1998) Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42:111–123CrossRefGoogle Scholar
  14. 14.
    Holmes CB, Fuchs M, Cates ME (2003) Jamming transitions in a mode-coupling model of suspension rheology. Europhys Lett 63:240–246CrossRefGoogle Scholar
  15. 15.
    Holmes CB, Cates ME, Fuchs M, Sollich P (2005) Glass transitions and shear thickening suspension rheology. J Rheol 49:237–269CrossRefGoogle Scholar
  16. 16.
    Kaldasch J, Senge B, Laven J (2008) Shear thickening in electrically stabilized colloidal suspensions. Rheol Acta 47:319–323CrossRefGoogle Scholar
  17. 17.
    Kaldasch J, Senge B, Laven J (2009) Shear thickening in electrically stabilized non-aqueous colloidal suspensions. Appl Rheol 19(2):23493Google Scholar
  18. 18.
    Kaldasch J, Senge B, Laven J (2009) The impact of non-DLVO forces on the onset of shear thickening of concentrated electrically stabilized aqueous suspensions. Rheol Acta 48:665–672CrossRefGoogle Scholar
  19. 19.
    Krishnamurthy L-N, Wagner NJ, Mewis J (2005) Shear thickening in polymer stabilized colloidal dispersions. J Rheol 49(6):1347–1360CrossRefGoogle Scholar
  20. 20.
    Lee JD, So JH, Yang SM (1999) Rheological behavior and stability of concentrated silica suspensions. J Rheol 43(5):1117–1140CrossRefGoogle Scholar
  21. 21.
    Maranzano BJ, Wagner NJ (2001) The effects of particle size on reversible shear thickening of concentrated dispersions. J Chem Phys 23(114):10514–10527CrossRefGoogle Scholar
  22. 22.
    Maranzano BJ, Wagner NJ (2001) The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. J Rheol 45(5):1205–1221CrossRefGoogle Scholar
  23. 23.
    Melrose JR (2003) Colloid flow during thickening—a particle level understanding for core-shell particles. Faraday Discuss 123:355–368CrossRefGoogle Scholar
  24. 24.
    Melrose JR, Ball RC (2004) Contact networks in continuously shear thickening colloids. J Rheol 48(5):961–978CrossRefGoogle Scholar
  25. 25.
    Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, LondonGoogle Scholar
  26. 26.
    Nommensen PA, Duits MHG, Lopulissa JS, van den Ende D, Mellema J (1998) Rheology of suspensions stabilized by long grafted polymers. Prog Colloid Polym Sci 110:144–149CrossRefGoogle Scholar
  27. 27.
    Sato T, Ruch R (1980) Stabilization of colloidal dispersion by polymer adsorption. Marcel Dekker Inc, New YorkGoogle Scholar
  28. 28.
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Vincent B, Edwards J, Emmett S, Jones A (1986) Colloids Surf 18:261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Technische Universität Berlin, Fakultät III: LebensmittelrheologieBerlinGermany

Personalised recommendations