Advertisement

Colloid and Polymer Science

, 287:1445 | Cite as

Molecular origin for rheological characteristics of native gellan gum

  • Masakuni TakoEmail author
  • Takeshi Teruya
  • Yukihiro Tamaki
  • Teruko Konishi
Original Contribution

Abstract

The 1H-nuclear magnetic resonance spectrum showed that the l-rhamnosyl residues of native gellan gum were coinvolved in both a small number of 4C1-pyranose conformations and a large number of 1C4-pyranose conformations, whereas for deacylated polymer, almost of the residues were involved in 4C1-pyranose conformation. The flow curves of native gellan gum showed plastic behavior above 0.2%. The elastic modulus stayed at a constant value with increase in temperature up to 40 °C, then decreased rapidly. The elastic modulus increased with addition of CaCl2 (6.8 mM) and stayed constant value with increase in temperature up to 65 °C, then decreased rapidly. The stronger elastic modulus was observed in deacylated gellan gum with addition of CaCl2. The elastic modulus of native gellan gum showed larger value than that in aqueous solution in the presence of urea (4.0 M). Intra- and intermolecular associations of native gellan gum molecules in the presence of Ca+2 were proposed.

Keywords

1H-NMR spectra Native gellan gum Gelation mechanism Intra- and intermolecular association Rheological characteristic 

Abbreviation

NMR

nuclear magnetic resonance

Notes

Acknowledgment

The authors thank Dr. T. A. Talashek, CP-Kelco, California, U.S.A. for providing the native and deacylated gellan gum.

References

  1. 1.
    Tako M, Nakamura S (1986) Carbohydr Res 155:200–205. doi: 10.1016/S0008-6215(00)90146-0 CrossRefGoogle Scholar
  2. 2.
    Tako M, Nakamura S (1986) Agric Biol chem 50:2817–2822Google Scholar
  3. 3.
    Tako M, Nakamura S, Kohda Y (1987) Carbohydr Res 161:247–253. doi: 10.1016/S0008-6215(00)90081-8 CrossRefGoogle Scholar
  4. 4.
    Tako M, Nakamura S (1988) Carbohydr Res 180:277–283. doi: 10.1016/0008-6215(88)80084-3 CrossRefGoogle Scholar
  5. 5.
    Tako M, Sakae A, Nakamura S (1989) Agric Biol Chem 53:771–776Google Scholar
  6. 6.
    Tako M, Hizukuri S (1995) J Carbohydr Chem 14:613–622. doi: 10.1080/07328309508005362 CrossRefGoogle Scholar
  7. 7.
    Tako M, Hanashiro I (1997) Polymer Gels Networks 5:241–250. doi: 10.1016/S0966-7822(96)00036-6 CrossRefGoogle Scholar
  8. 8.
    Tako M, Kohda Y (1997) Appl Glycosci 44:153–159Google Scholar
  9. 9.
    Tako M, Nakamura S (1984) Agric Biol chem 48:2987–2993Google Scholar
  10. 10.
    Tako M, Nakamura S (1985) Carbohydr Res 138:207–213. doi: 10.1016/0008-6215(85)85104-1 CrossRefGoogle Scholar
  11. 11.
    Tako M, Nakamura S (1986) FEBS Lett 204:33–36. doi: 10.1016/0014-5793(86)81382-5 CrossRefGoogle Scholar
  12. 12.
    Tako M (1991) J Carbohydr Chem 10:619–633. doi: 10.1080/07328309108543936 CrossRefGoogle Scholar
  13. 13.
    Tako M (1991) Carbohydr Polym 16:239–252CrossRefGoogle Scholar
  14. 14.
    Tako M (1992) ACS Symp Ser 489:258–281Google Scholar
  15. 15.
    Tako M (1993) Colloids Surfaces B: Biointerfaces 1:125–131. doi: 10.1016/0927-7765(93)80043-X CrossRefGoogle Scholar
  16. 16.
    Tako M (1992) Biosci Biotechnol Biochem 56:1188–1192CrossRefGoogle Scholar
  17. 17.
    Tako M, Qi ZQ, Yoza E, Toyama S (1998) Food Res Int 32:543–548. doi: 10.1016/S0963-9969(99)00022-8 CrossRefGoogle Scholar
  18. 18.
    Tako M, Hizukuri S (1999) J Carbohydr Chem 18:573–584. doi: 10.1080/07328309908544020 CrossRefGoogle Scholar
  19. 19.
    Tako M (2000) J Appl Glycosci 47:187–192Google Scholar
  20. 20.
    Tako M, Hizukuri S (2000) Cereal Chem 77:473–477. doi: 10.1094/CCHEM.2000.77.4.473 CrossRefGoogle Scholar
  21. 21.
    Tako M, Hizukuri S (2003) Carbohydr Polym 48:397–401. doi: 10.1016/S0144-8617(01)00287-9 CrossRefGoogle Scholar
  22. 22.
    Tako M, Tamaki Y, Konishi T, Shibanuma K, Hanashiro I, Takeda Y (2008) Food Res Int 41:797–802. doi: 10.1016/j.foodres.2008.07.002 CrossRefGoogle Scholar
  23. 23.
    Tako M (2000) J Appl Glycosci 47:49–53Google Scholar
  24. 24.
    Sandford PA, Cottrell IW, Pettitt DJ (1984) Pure and Appl Chem 56:879–892. doi: 10.1351/pac198456070879 CrossRefGoogle Scholar
  25. 25.
    Lapasin R, Pricl S (1995) Rheology. In: Lapasin R, Prid S (eds) Rheology of industrial polysaccharides - theory and applications. Blackie Academic and Professional, Glasgow, pp 162–249Google Scholar
  26. 26.
    O’Neill MA, Selvendran RR, Morris VJ (1983) Carbohydr Res 124:123–133. doi: 10.1016/0008-6215(83)88360-8 CrossRefGoogle Scholar
  27. 27.
    Jansson PE, Lindberg B, Sandford PA (1983) Carbohydr Res 124:135–139. doi: 10.1016/0008-6215(83)88361-X CrossRefGoogle Scholar
  28. 28.
    Kuo MS, Mort AJ (1987) Carbohydr Res 156:173–187. doi: 10.1016/S0008-6215(00)90109-5 CrossRefGoogle Scholar
  29. 29.
    Upstill C, Atkins EDT, Atwool PT (1986) Int J Biol Macromol 8:275–288. doi: 10.1016/0141-8130(86)90041-3 CrossRefGoogle Scholar
  30. 30.
    Chandrasekaran R, Pulgjaner LC, Joyce KL et al (1988) Carbohydr Res 181:23–40. doi: 10.1016/0008-6215(88)84020-5 CrossRefGoogle Scholar
  31. 31.
    Milas M, Shi X, Rinaudo M (1990) Biopolym 30:451–464. doi: 10.1002/bip.360300322 CrossRefGoogle Scholar
  32. 32.
    Morris ER, Gothard MGE, Hember MWN, Manning CE, Robinson G (1996) Carbohydr Polym 30:165–175. doi: 10.1016/S0144-8617(96)00059-8 CrossRefGoogle Scholar
  33. 33.
    Tako M, Kiriaki M (1994) Agric Biol Chem 54:3097–33084Google Scholar
  34. 34.
    Tako M (1993) Biosci Biotechnol Biochem 57:1182–1184CrossRefGoogle Scholar
  35. 35.
    Jansson PE, Lindberg B, Wildmalm G (1985) Carbohyd Res 139:217–223. doi: 10.1016/0008-6215(85)90022-9 Google Scholar
  36. 36.
    Jansson PE, Lindberg B, Lindberg J, Maekawa E (1986) Carbohydr Res 156:157–163. doi: 10.1016/S0008-6215(00)90107-1 CrossRefGoogle Scholar
  37. 37.
    Chowdhury TA, Lindberg B, Ul L (1987) Carbohydr Res 164:117–122. doi: 10.1016/0008-6215(87)80124-6 CrossRefGoogle Scholar
  38. 38.
    Tako M, Tamaki H (2005) Polym J 37:498–505. doi: 10.1295/polymj.37.498 CrossRefGoogle Scholar
  39. 39.
    Jansson PE, Kumar NA, Lindberg B (1986) Carbohydr Res 156:165–172. doi: 10.1016/S0008-6215(00)90108-3 CrossRefGoogle Scholar
  40. 40.
    Tako M, Tohma S, Taira T et al (2003) Carbohydr Polym 54:279–285. doi: 10.1016/S0144-8617(03)00029-8 CrossRefGoogle Scholar
  41. 41.
    Harris J (1977) In: Rheology and non-Newtonian flow: more detail analysis of the coaxial cylinder viscometer. New York, Longman, pp 28-33Google Scholar
  42. 42.
    Markovitz H (1952) J Appl Phys 23:1070–1077. doi: 10.1063/1.1701988 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Masakuni Tako
    • 1
    Email author
  • Takeshi Teruya
    • 1
  • Yukihiro Tamaki
    • 1
  • Teruko Konishi
    • 1
  1. 1.Department of Bioscience and BiotechnologyUniversity of the RyukyusNishiharaJapan

Personalised recommendations