Colloid and Polymer Science

, 287:1391 | Cite as

Slow salt-induced aggregation of citrate-covered silver particles in aqueous solutions of cellulose derivatives

  • Loan T. T. Trinh
  • Anna-Lena Kjøniksen
  • Kaizheng Zhu
  • Kenneth D. Knudsen
  • Sondre Volden
  • Wilhelm R. Glomm
  • Bo NyströmEmail author
Original Contribution


In this work, the salt-induced aggregation of bare and polymer-covered silver particles has been studied with the aid of light scattering and UV-visible spectroscopy. Light scattering on a suspension of bare silver particles at a low salt concentration shows that the cluster fractal dimension d f changes from 1.6 to 2 in the course of the aggregation process, whereas no restructuring of the clusters is observed at a higher salinity where d f ≈ 1.6. The growth of the clusters over time can be described by a power law R h ∝ t α , where R h is the apparent hydrodynamic radius. The UV-visible experiments revealed that increasing the size of the bare silver particles lead to a significant broadening and red-shift of the absorbance band, whereas for salt-induced growth of Ag clusters, a blue-shift and broadening was observed. Addition of salt to a suspension of silver particles and hydroxyethylcellulose divulged a slower broadening of the surface plasmon peak than without polymer.


Silver particles Aggregation Particle growth Polymer adsorption Plasmon bands Hydroxyethylcellulose 



This work was financially supported from the Research Council of Norway within the FRINAT program, project number 177556/V30.


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  2. 2.
    Hutter E, Fendler JH (2004) Adv Mater 16:1685CrossRefGoogle Scholar
  3. 3.
    Almeida VR, Barrios CA, Panepucci RR, Lipson M (2005) Nature 431:1081CrossRefGoogle Scholar
  4. 4.
    Mie G (1908) Ann Phys 25:377CrossRefGoogle Scholar
  5. 5.
    Enüstün BV, Turkevich J (1963) J Am Chem Soc 85:3317CrossRefGoogle Scholar
  6. 6.
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, New YorkGoogle Scholar
  7. 7.
    Israelachvili J (1991) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  8. 8.
    Meakin P (1983) Phys Rev Lett 51:1119CrossRefGoogle Scholar
  9. 9.
    Kolb M, Botet R, Jullien R (1983) Phys Rev Lett 51:1123CrossRefGoogle Scholar
  10. 10.
    Kolb M, Jullien R (1984) J Physique Lett 45:L977CrossRefGoogle Scholar
  11. 11.
    Jullien R, Botet R (1987) Aggregation and fractal aggregates. World Scientific, SingaporeGoogle Scholar
  12. 12.
    Avnir D (ed) (1989) The fractal approach to heterogeneous chemistry: surfaces, colloids, polymers. Wiley, ChichesterGoogle Scholar
  13. 13.
    Von Smoluchowski M (1917) Z Phys Chem 92:129Google Scholar
  14. 14.
    Schmitt A, Fernández-Barbero A, Cabrerizo-Vílchez MA, Hidalgo-Álvarez R (2000) J Phys Condens Matter 12:A281CrossRefGoogle Scholar
  15. 15.
    van Dongen PGJ, Ernst MH (1985) Phys Rev Lett 54:1396CrossRefGoogle Scholar
  16. 16.
    van Dongen PGJ, Ernst MH (1988) J Stat Phys 50:295CrossRefGoogle Scholar
  17. 17.
    Ball RC, Weitz TA, Witten TA, Leyvraz F (1987) Phys Rev E 58:274Google Scholar
  18. 18.
    Broide ML, Cohen RJ (1992) J Colloid Interface Sci 153:493CrossRefGoogle Scholar
  19. 19.
    Weitz DA, Huang JS, Lin MY, Sung J (1984) Phys Rev Lett 53:1657CrossRefGoogle Scholar
  20. 20.
    Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416CrossRefGoogle Scholar
  21. 21.
    Meakin P, Vicsek T, Family F (1985) Phys Rev B 31:564CrossRefGoogle Scholar
  22. 22.
    Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, LondonGoogle Scholar
  23. 23.
    Ploehn HJ, Russel WB (1990) Adv Chem Eng 15:137CrossRefGoogle Scholar
  24. 24.
    Mulvaney P (1996) Langmuir 12:788CrossRefGoogle Scholar
  25. 25.
    Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New YorkGoogle Scholar
  26. 26.
    Genzel L, Martin TP (1972) Phys Status Solidi B 51:91CrossRefGoogle Scholar
  27. 27.
    Noguez C (2005) Opt Mater 27:1204CrossRefGoogle Scholar
  28. 28.
    Noguez C (2007) J Phys Chem C 111:3806CrossRefGoogle Scholar
  29. 29.
    Kreibig U (1974) J Phys F Met Phys 4:999CrossRefGoogle Scholar
  30. 30.
    Silioc C, Maleki A, Zhu K, Kjøniksen A-L, Nyström B (2007) Biomacromolecules 8:719CrossRefGoogle Scholar
  31. 31.
    Beheshti N, Zhu K, Kjøniksen A-L, Nyström B (2008) Colloids Surf A 328:79CrossRefGoogle Scholar
  32. 32.
    Miyajima T, Kitsuki T, Kita K, Kamitani H, Yamaki K (1999) US Patent 5891450Google Scholar
  33. 33.
    Beheshti N, Bu H, Zhu K, Kjøniksen A-L, Knudsen KD, Pamies R, Hernándes Cifre JG, de la Torre JG, Nyström B (2006) J Phys Chem B 110:6601CrossRefGoogle Scholar
  34. 34.
    Phillies GDJ, Richardson C, Quinlan CA, Ren SZ (1993) Macromolecules 26:6849CrossRefGoogle Scholar
  35. 35.
    Ngai KL, Phillies GDJ (1996) J Chem Phys 105:8385CrossRefGoogle Scholar
  36. 36.
    Kjøniksen A-L, Joabsson F, Thuresson K, Nyström B (1999) J Phys Chem B 103:9818CrossRefGoogle Scholar
  37. 37.
    Amirkhani M, Volden S, Zhu K, Glomm WR, Nyström B (2008) J Colloid Interface Sci 328:20CrossRefGoogle Scholar
  38. 38.
    Wilcoxon JP, Martin JE, Schaefer DW (1987) Phys Rev Lett 58:1051CrossRefGoogle Scholar
  39. 39.
    Aubert C, Cannell DS (1986) Phys Rev Lett 56:738CrossRefGoogle Scholar
  40. 40.
    Olivier BJ, Sorensen CM (1990) Phys Rev A 41:2093CrossRefGoogle Scholar
  41. 41.
    Asnaghi D, Carpineti M, Giglio M, Sozzi M (1992) Phys Rev A 45:1018CrossRefGoogle Scholar
  42. 42.
    Bolle G, Cametti C, Codastefano P, Tartaglia P (1987) Phys Rev A 35:837CrossRefGoogle Scholar
  43. 43.
    Burns JL, Yan Y, Jameson GJ, Biggs S (1997) Langmuir 13:6413CrossRefGoogle Scholar
  44. 44.
    Tirado-Miranda M, Scmitt A, Callejas-Fermándes J, Fernándes-Barbero A (2003) J Chem Phys 119:9251CrossRefGoogle Scholar
  45. 45.
    Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Nature 339:360CrossRefGoogle Scholar
  46. 46.
    Cohen Stuart MA, Waajen FHWH, Cosgrove T, Vincent B, Crowley TL (1984) Macromolecules 17:1825CrossRefGoogle Scholar
  47. 47.
    Witten TA, Pincus PA (1986) Macromolecules 19:2509CrossRefGoogle Scholar
  48. 48.
    Zhu PW, Napper DH (1994) Phys Rev E 50:1360CrossRefGoogle Scholar
  49. 49.
    Swenson J, Smalley MV, Hatharasinghe HLM (1998) Phys Rev Lett 81:5840CrossRefGoogle Scholar
  50. 50.
    Volpert E, Selb J, Candau F, Green N, Argillier JF, Audibert A (1998) Langmuir 14:1870CrossRefGoogle Scholar
  51. 51.
    Milner ST (1991) Science 251:905CrossRefGoogle Scholar
  52. 52.
    Lauten RA, Kjøniksen A-L, Nyström B (2001) Langmuir 17:924CrossRefGoogle Scholar
  53. 53.
    Heath JR (1989) Phys Rev B 40:9982CrossRefGoogle Scholar
  54. 54.
    Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi JR (2007) J Phys Chem C 111:14962CrossRefGoogle Scholar
  55. 55.
    Ghosh SK, Pal T (2007) Chem Rev 107:4797CrossRefGoogle Scholar
  56. 56.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668CrossRefGoogle Scholar
  57. 57.
    Henglein A, Giersig M (1999) J Phys Chem 103:9533Google Scholar
  58. 58.
    González AL, Noguez C (2007) Phys Status Solidi 4:4118CrossRefGoogle Scholar
  59. 59.
    Zhang JZ, Noguez C (2008) Plasmonics 3:127CrossRefGoogle Scholar
  60. 60.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) Nano Today 4:244CrossRefGoogle Scholar
  61. 61.
    Wilcoxon JP, Martin JE, Provencio P (2001) J Chem Phys 115:998CrossRefGoogle Scholar
  62. 62.
    Zhao LL, Kelly KL, Schatz GC (2003) J Phys Chem B 107:7343CrossRefGoogle Scholar
  63. 63.
    Aubouy M, Raphaël E (1998) Macromolecules 31:4357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Loan T. T. Trinh
    • 1
  • Anna-Lena Kjøniksen
    • 1
  • Kaizheng Zhu
    • 1
  • Kenneth D. Knudsen
    • 2
  • Sondre Volden
    • 3
  • Wilhelm R. Glomm
    • 3
  • Bo Nyström
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Department of PhysicsInstitute for Energy TechnologyKjellerNorway
  3. 3.Ugelstad Laboratory, Department of Chemical EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations