Colloid and Polymer Science

, Volume 287, Issue 7, pp 829–837 | Cite as

Controllable fabrication of nanocrystal-polymer hybrids via the catalytic chain transfer polymerization process

  • Cai-Feng Wang
  • Yu-Peng Cheng
  • Ji-Yi Wang
  • Dong Zhang
  • Lin-Rui Hou
  • Li Chen
  • Su Chen
Original Contribution

Abstract

A facile catalytic chain transfer polymerization (CCTP) technique has been developed to synthesize covalently linked CdS nanocrystal-polymer hybrids with good optical properties. The in situ polymerization of methyl methacrylate (MMA) on the surface of modified CdS nanocrystals (NCs) with diameter of 5 nm via CCTP process yielded CdS-polymethylmethacrylate (PMMA) hybrid nanocomposites; while the incorporation of hydroxyl-coated CdS NCs into poly(methacryloxypropyltrimethoxysilane) (PMPS)-co-PMMA matrices prepared by CCTP afforded CdS-PMPS-co-PMMA hybrid nanocomposites, which were further cross-linked by free radical polymerization to form CdS NC-polymer network. The spectroscopic studies indicate that as-prepared CdS NC-polymer hybrids show good photoluminescence (PL) and the NC-polymer network exhibits highly enhanced PL property with respect to that before cross-linking. Also described are the probable mechanism for the catalytic chain transfer polymerization on the surface of modified nanocrystal and the measurement of chain transfer constants.

Keywords

CdS nanocrystal Catalytic chain transfer polymerization (CCTP) Grafting polymerization Optical properties 

References

  1. 1.
    Brus LE (1984) J Chem Phys 80:4403CrossRefGoogle Scholar
  2. 2.
    Alivisatos AP (1996) Science 271:933CrossRefGoogle Scholar
  3. 3.
    Tang ZY, Kotov NA, Giersig M (2002) Science 297:237CrossRefGoogle Scholar
  4. 4.
    Peng XG, Thessing J (2005) Struc Bond 118:79CrossRefGoogle Scholar
  5. 5.
    Coe S, Woo WK, Bawendi M, Bulovic V (2002) Nature 420:800CrossRefGoogle Scholar
  6. 6.
    Tesster N, Medvedev V, Kazes M, Kan S, Banin U (2002) Science 295:1506CrossRefGoogle Scholar
  7. 7.
    Mamedov AA, Belov A, Giersig M, Mamedova NN, Kotov NA (2001) J Am Chem Soc 123:7738CrossRefGoogle Scholar
  8. 8.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  9. 9.
    Wang L, Liu YS, Jiang X, Qin DH, Cao Y (2007) J Phys Chem C 111:9538CrossRefGoogle Scholar
  10. 10.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897CrossRefGoogle Scholar
  11. 11.
    Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013CrossRefGoogle Scholar
  12. 12.
    Fernandez-Arguelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Sanz Medel A, Mallet JM, Brochon JC, Feltz A, Oheim M, Parak WJ (2007) Nano Lett 7:2613CrossRefGoogle Scholar
  13. 13.
    Wang LY, Li P, Zhuang J, Bai F, Feng J, Yan XY, Li YD (2008) Angew Chem Int Ed 47:1054CrossRefGoogle Scholar
  14. 14.
    Wang CW, Moffitt MG (2004) Langmuir 20:11784CrossRefGoogle Scholar
  15. 15.
    Zhang H, Wang CL, Li MJ, Zhang JH, Lu G, Yang B (2005) Adv Mater 17:853CrossRefGoogle Scholar
  16. 16.
    Sanchez-Gaytan BL, Cui W, Kim Y, Mendez-Polanco MA, Duncan TV, Fryd M, Wayland BB, Park SJ (2007) Angew Chem Int Ed 46:9235CrossRefGoogle Scholar
  17. 17.
    Stavrinadis A, Beal R, Smith JM, Assender HE, Watt AAR (2008) Adv Mater 20:3105CrossRefGoogle Scholar
  18. 18.
    Smith AM, Nie S (2008) J Am Chem Soc 130:11278CrossRefGoogle Scholar
  19. 19.
    Chen Y, Thakar R, Snee PT (2008) J Am Chem Soc 130:3744CrossRefGoogle Scholar
  20. 20.
    Bhaviripudi S, Qi J, Hu EL, Belcher AM (2007) Nano Lett 7:3512CrossRefGoogle Scholar
  21. 21.
    Chen S, Zhu J, Shen YF, Hu CH, Chen L (2007) Langmuir 23:850CrossRefGoogle Scholar
  22. 22.
    Chen L, Zhu J, Li Q, Chen S, Wang YR (2007) Eur Polym J 43:4593CrossRefGoogle Scholar
  23. 23.
    Hwang SH, Moorefield CN, Wang P, Jeong KU, Cheng SZD, Kotta KK, Newkome GR (2006) J Am Chem Soc 128:7505CrossRefGoogle Scholar
  24. 24.
    Cao XD, Li CM, Bao HF, Bao QL, Dong H (2007) Chem Mater 19:3773CrossRefGoogle Scholar
  25. 25.
    von Werne T, Patten TE (2001) J Am Chem Soc 123:7497CrossRefGoogle Scholar
  26. 26.
    Spange S (2000) Prog Polym Sci 25:781CrossRefGoogle Scholar
  27. 27.
    Heuts JPA, Kukulj D, Forster DJ, Davis TP (1998) Macromolecules 31:2894CrossRefGoogle Scholar
  28. 28.
    Heuts JPA, Forster DJ, Davis TP (1999) Macromol Rapid Commun 20:299CrossRefGoogle Scholar
  29. 29.
    Heuts JPA, Forster DJ, Davis TP (1999) Macromolecules 32:3907CrossRefGoogle Scholar
  30. 30.
    Gridnev AA, Ittel SD (2001) Chem Rev 101:3611CrossRefGoogle Scholar
  31. 31.
    Yang SY, Li Q, Chen L, Chen S (2008) J Mater Chem 18:5599CrossRefGoogle Scholar
  32. 32.
    Bakac A, Espenson JH (1984) J Am Chem Soc 106:5197CrossRefGoogle Scholar
  33. 33.
    Nosaka Y, Yamaguchi K, Miyama H, Hayashi H (1988) Chem Lett 17:605CrossRefGoogle Scholar
  34. 34.
    Zhang H, Zhou Z, Yang B, Gao MY (2003) J Phys Chem B 107:8CrossRefGoogle Scholar
  35. 35.
    Ghosh S, Mukherjee A, Kim H, Lee C (2003) Mater Chem Phys 78:726CrossRefGoogle Scholar
  36. 36.
    Chen M, Pan LJ, Huang ZQ, Cao JM, Zheng YD, Zhang HQ (2007) Mater Chem Phys 101:317CrossRefGoogle Scholar
  37. 37.
    Wang SH, Yang SH, Yang CL, Li ZQ, Wang JN, Ge WK (2000) J Phys Chem B 104:11853CrossRefGoogle Scholar
  38. 38.
    Brus L (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  39. 39.
    Lue CL, Cui ZC, Li Z, Yang B, Shen JC (2003) J Mater Chem 13:526CrossRefGoogle Scholar
  40. 40.
    Jing SY, Lee HJ, Choi CK (2002) J Korean Phys Soc 41:769Google Scholar
  41. 41.
    Haddleton DM, Depaquis E, Kelly EJ, Kukulj D, Morsley SR, Bon SAF, Eason MD, Steward AG (2001) Polym Chem 39:2378CrossRefGoogle Scholar
  42. 42.
    Mayo FR (1943) J Am Chem Soc 65:2324CrossRefGoogle Scholar
  43. 43.
    Roberts GE, Davis TP, Heuts JPA, Russell GT (2002) Polym Chem 40:782CrossRefGoogle Scholar
  44. 44.
    Suddaby KG, Maloney DR, Haddleton DM (1997) Macromolecules 30:702CrossRefGoogle Scholar
  45. 45.
    Chestnoy N, Harris TD, Hull R, Brus LE (1986) J Phys Chem 90:3393CrossRefGoogle Scholar
  46. 46.
    Noglik H, Pietro WJ (1994) Chem Mater 6:1593CrossRefGoogle Scholar
  47. 47.
    Wang Y, Herron N (1991) J Phys Chem 95:525CrossRefGoogle Scholar
  48. 48.
    Torimoto T, Tsumura N, Miyake M, Nishizawa M, Sakata T, Mori H, Yoneyama H (1999) Langmuir 15:1853CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Cai-Feng Wang
    • 1
  • Yu-Peng Cheng
    • 1
  • Ji-Yi Wang
    • 1
  • Dong Zhang
    • 1
  • Lin-Rui Hou
    • 1
  • Li Chen
    • 1
  • Su Chen
    • 1
  1. 1.State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations